netifier / netifier.py
holylovenia's picture
Upload netifier.py with huggingface_hub
b539158 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "netifier"
_DESCRIPTION = """\
Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia,
such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification.
The dataset consists of 7,773 texts. The author manually labelled ~7k samples into 4 categories:
pornography, hate speech, racism, and radicalism.
"""
_HOMEPAGE = "https://github.com/ahmadizzan/netifier"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"
_URLS = {_DATASETNAME: {"train": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/train.csv", "test": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/test.csv"}}
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class Netifier(datasets.GeneratorBasedBuilder):
"""Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia,
such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="netifier_source",
version=SOURCE_VERSION,
description="Netifier source schema",
schema="source",
subset_id="netifier",
),
SEACrowdConfig(
name="netifier_seacrowd_text_multi",
version=SEACROWD_VERSION,
description="Netifier Nusantara schema",
schema="seacrowd_text_multi",
subset_id="netifier",
),
]
DEFAULT_CONFIG_NAME = "netifier_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"pornography": datasets.Value("bool"),
"blasphemy_racism_discrimination": datasets.Value("bool"),
"radicalism": datasets.Value("bool"),
"defamation": datasets.Value("bool"),
}
)
elif self.config.schema == "seacrowd_text_multi":
features = schemas.text_multi_features([0, 1])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
train_data = Path(dl_manager.download(urls["train"]))
test_data = Path(dl_manager.download(urls["test"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_data,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_data,
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# Dataset does not have id, using row index as id
label_cols = ["pornography", "blasphemy_racism_discrimination", "radicalism", "defamation"]
df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index()
df.columns = ["id", "original_text", "text"] + label_cols
if self.config.schema == "source":
for row in df.itertuples():
ex = {
"text": row.text,
}
for label in label_cols:
ex[label] = getattr(row, label)
yield row.id, ex
elif self.config.schema == "seacrowd_text_multi":
for row in df.itertuples():
ex = {
"id": str(row.id),
"text": row.text,
"labels": [label for label in row[4:]],
}
yield row.id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")