|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "netifier" |
|
|
|
_DESCRIPTION = """\ |
|
Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia, |
|
such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification. |
|
The dataset consists of 7,773 texts. The author manually labelled ~7k samples into 4 categories: |
|
pornography, hate speech, racism, and radicalism. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ahmadizzan/netifier" |
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International" |
|
_URLS = {_DATASETNAME: {"train": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/train.csv", "test": "https://raw.githubusercontent.com/ahmadizzan/netifier/master/data/processed/test.csv"}} |
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class Netifier(datasets.GeneratorBasedBuilder): |
|
"""Netifier dataset is a collection of scraped posts on famous social media sites in Indonesia, |
|
such as Instagram, Twitter, and Kaskus aimed to do multi-label toxicity classification.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="netifier_source", |
|
version=SOURCE_VERSION, |
|
description="Netifier source schema", |
|
schema="source", |
|
subset_id="netifier", |
|
), |
|
SEACrowdConfig( |
|
name="netifier_seacrowd_text_multi", |
|
version=SEACROWD_VERSION, |
|
description="Netifier Nusantara schema", |
|
schema="seacrowd_text_multi", |
|
subset_id="netifier", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "netifier_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"pornography": datasets.Value("bool"), |
|
"blasphemy_racism_discrimination": datasets.Value("bool"), |
|
"radicalism": datasets.Value("bool"), |
|
"defamation": datasets.Value("bool"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features([0, 1]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
train_data = Path(dl_manager.download(urls["train"])) |
|
test_data = Path(dl_manager.download(urls["test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_data, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_data, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
label_cols = ["pornography", "blasphemy_racism_discrimination", "radicalism", "defamation"] |
|
df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index() |
|
df.columns = ["id", "original_text", "text"] + label_cols |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = { |
|
"text": row.text, |
|
} |
|
for label in label_cols: |
|
ex[label] = getattr(row, label) |
|
yield row.id, ex |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row.id), |
|
"text": row.text, |
|
"labels": [label for label in row[4:]], |
|
} |
|
yield row.id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|