File size: 7,530 Bytes
a350d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path
from typing import Dict, List, Tuple

try:
    import audiosegment
except:
    print("Install the `audiosegment` package to use.")

try:
    import textgrid
except:
    print("Install the `textgrid` package to use.")

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@INPROCEEDINGS{
10337314,
author={Rahim, Mohd Zulhafiz and Juan, Sarah Samson and Mohamad, Fitri Suraya},
booktitle={2023 International Conference on Asian Language Processing (IALP)},
title={Improving Speaker Diarization for Low-Resourced Sarawak Malay Language Conversational Speech Corpus},
year={2023},
pages={228-233},
keywords={Training;Oral communication;Data models;Usability;Speech processing;Testing;Speaker diarization;x-vectors;clustering;low-resource;auto-labeling;pseudo-labeling;unsupervised},
doi={10.1109/IALP61005.2023.10337314}}
"""

_DATASETNAME = "sarawak_malay"

_DESCRIPTION = """\
This is a Sarawak Malay conversation data for the purpose of speech technology research. \
At the moment, this is an experimental data and currently used for investigating \
speaker diarization. The data was collected by Faculty of Computer Science and \
Information Technology, Universiti Malaysia Sarawak. The data consists of 38 conversations \
that have been transcribed using Transcriber (see TextGrid folder), where each file \
contains two speakers. Each conversation was recorded by different individuals using microphones \
from mobile devices or laptops thus, different file formats were collected from the data collectors. \
All data was then standardized to mono, 16000Khz, wav format.
"""

_HOMEPAGE = "https://github.com/sarahjuan/sarawakmalay"

_LANGUAGES = ["zlm"]

_LICENSE = Licenses.CC0_1_0.value
_LOCAL = False

_URLS = {
    _DATASETNAME: "https://github.com/sarahjuan/sarawakmalay/archive/refs/heads/main.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class SarawakMalayDataset(datasets.GeneratorBasedBuilder):
    """This is experimental Sarawak Malay conversation data collected by \
        Universiti Malaysia Sarawak for speech technology research, \
        specifically speaker diarization. The data includes 38 conversations, \
        each with two speakers, recorded on various devices and then standardized to mono, \
        16000Khz, wav format."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    SEACROWD_SCHEMA_NAME = "sptext"

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                    "metadata": {
                        "malay_text": datasets.Value("string"),
                    },
                }
            )

        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "sarawakmalay-main"),
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        id_counter = 0
        filenames = filter(lambda x: x.endswith(".wav"), os.listdir(f"{filepath}/wav"))
        filenames = map(lambda x: x.replace(".wav", ""), filenames)

        os.makedirs(f"{filepath}/segmented", exist_ok=True)
        for i, filename in enumerate(filenames):
            info = textgrid.TextGrid.fromFile(f"{filepath}/TextGrid/{filename}.TextGrid")
            if len(info) == 3:
                sarawak_conversation, malay_conversation, speakers = info
            else:
                sarawak_conversation, malay_conversation, speakers, _ = info

            audio_file = audiosegment.from_file(f"{filepath}/wav/{filename}.wav").resample(sample_rate_Hz=16000)

            for sarawak_tg, malay_tg, speaker in zip(sarawak_conversation, malay_conversation, speakers):
                start, end, text = sarawak_tg.minTime, sarawak_tg.maxTime, sarawak_tg.mark
                malay_text = malay_tg.mark
                speaker_id = speaker.mark

                start_sec, end_sec = int(start * 1000), int(end * 1000)
                segment = audio_file[start_sec:end_sec]
                segement_filename = f"{filepath}/segmented/{filename}-{round(start, 0)}-{round(end, 0)}.wav"
                segment.export(segement_filename, format="wav")

                if self.config.schema == "source":
                    yield id_counter, {
                        "id": id_counter,
                        "speaker_id": speaker_id,
                        "path": f"{filepath}/wav/{filename}.wav",
                        "audio": segement_filename,
                        "text": text,
                        "metadata": {
                            "malay_text": malay_text,
                        },
                    }

                elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
                    yield id_counter, {"id": id_counter, "speaker_id": speaker_id, "path": f"{filepath}/wav/{filename}.wav", "audio": segement_filename, "text": text, "metadata": {"speaker_age": None, "speaker_gender": None}}

                id_counter += 1