Datasets:
File size: 7,530 Bytes
a350d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
try:
import audiosegment
except:
print("Install the `audiosegment` package to use.")
try:
import textgrid
except:
print("Install the `textgrid` package to use.")
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{
10337314,
author={Rahim, Mohd Zulhafiz and Juan, Sarah Samson and Mohamad, Fitri Suraya},
booktitle={2023 International Conference on Asian Language Processing (IALP)},
title={Improving Speaker Diarization for Low-Resourced Sarawak Malay Language Conversational Speech Corpus},
year={2023},
pages={228-233},
keywords={Training;Oral communication;Data models;Usability;Speech processing;Testing;Speaker diarization;x-vectors;clustering;low-resource;auto-labeling;pseudo-labeling;unsupervised},
doi={10.1109/IALP61005.2023.10337314}}
"""
_DATASETNAME = "sarawak_malay"
_DESCRIPTION = """\
This is a Sarawak Malay conversation data for the purpose of speech technology research. \
At the moment, this is an experimental data and currently used for investigating \
speaker diarization. The data was collected by Faculty of Computer Science and \
Information Technology, Universiti Malaysia Sarawak. The data consists of 38 conversations \
that have been transcribed using Transcriber (see TextGrid folder), where each file \
contains two speakers. Each conversation was recorded by different individuals using microphones \
from mobile devices or laptops thus, different file formats were collected from the data collectors. \
All data was then standardized to mono, 16000Khz, wav format.
"""
_HOMEPAGE = "https://github.com/sarahjuan/sarawakmalay"
_LANGUAGES = ["zlm"]
_LICENSE = Licenses.CC0_1_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/sarahjuan/sarawakmalay/archive/refs/heads/main.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SarawakMalayDataset(datasets.GeneratorBasedBuilder):
"""This is experimental Sarawak Malay conversation data collected by \
Universiti Malaysia Sarawak for speech technology research, \
specifically speaker diarization. The data includes 38 conversations, \
each with two speakers, recorded on various devices and then standardized to mono, \
16000Khz, wav format."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "sptext"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"metadata": {
"malay_text": datasets.Value("string"),
},
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "sarawakmalay-main"),
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
id_counter = 0
filenames = filter(lambda x: x.endswith(".wav"), os.listdir(f"{filepath}/wav"))
filenames = map(lambda x: x.replace(".wav", ""), filenames)
os.makedirs(f"{filepath}/segmented", exist_ok=True)
for i, filename in enumerate(filenames):
info = textgrid.TextGrid.fromFile(f"{filepath}/TextGrid/{filename}.TextGrid")
if len(info) == 3:
sarawak_conversation, malay_conversation, speakers = info
else:
sarawak_conversation, malay_conversation, speakers, _ = info
audio_file = audiosegment.from_file(f"{filepath}/wav/{filename}.wav").resample(sample_rate_Hz=16000)
for sarawak_tg, malay_tg, speaker in zip(sarawak_conversation, malay_conversation, speakers):
start, end, text = sarawak_tg.minTime, sarawak_tg.maxTime, sarawak_tg.mark
malay_text = malay_tg.mark
speaker_id = speaker.mark
start_sec, end_sec = int(start * 1000), int(end * 1000)
segment = audio_file[start_sec:end_sec]
segement_filename = f"{filepath}/segmented/{filename}-{round(start, 0)}-{round(end, 0)}.wav"
segment.export(segement_filename, format="wav")
if self.config.schema == "source":
yield id_counter, {
"id": id_counter,
"speaker_id": speaker_id,
"path": f"{filepath}/wav/{filename}.wav",
"audio": segement_filename,
"text": text,
"metadata": {
"malay_text": malay_text,
},
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
yield id_counter, {"id": id_counter, "speaker_id": speaker_id, "path": f"{filepath}/wav/{filename}.wav", "audio": segement_filename, "text": text, "metadata": {"speaker_age": None, "speaker_gender": None}}
id_counter += 1
|