|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
try: |
|
import audiosegment |
|
except: |
|
print("Install the `audiosegment` package to use.") |
|
|
|
try: |
|
import textgrid |
|
except: |
|
print("Install the `textgrid` package to use.") |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{ |
|
10337314, |
|
author={Rahim, Mohd Zulhafiz and Juan, Sarah Samson and Mohamad, Fitri Suraya}, |
|
booktitle={2023 International Conference on Asian Language Processing (IALP)}, |
|
title={Improving Speaker Diarization for Low-Resourced Sarawak Malay Language Conversational Speech Corpus}, |
|
year={2023}, |
|
pages={228-233}, |
|
keywords={Training;Oral communication;Data models;Usability;Speech processing;Testing;Speaker diarization;x-vectors;clustering;low-resource;auto-labeling;pseudo-labeling;unsupervised}, |
|
doi={10.1109/IALP61005.2023.10337314}} |
|
""" |
|
|
|
_DATASETNAME = "sarawak_malay" |
|
|
|
_DESCRIPTION = """\ |
|
This is a Sarawak Malay conversation data for the purpose of speech technology research. \ |
|
At the moment, this is an experimental data and currently used for investigating \ |
|
speaker diarization. The data was collected by Faculty of Computer Science and \ |
|
Information Technology, Universiti Malaysia Sarawak. The data consists of 38 conversations \ |
|
that have been transcribed using Transcriber (see TextGrid folder), where each file \ |
|
contains two speakers. Each conversation was recorded by different individuals using microphones \ |
|
from mobile devices or laptops thus, different file formats were collected from the data collectors. \ |
|
All data was then standardized to mono, 16000Khz, wav format. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/sarahjuan/sarawakmalay" |
|
|
|
_LANGUAGES = ["zlm"] |
|
|
|
_LICENSE = Licenses.CC0_1_0.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/sarahjuan/sarawakmalay/archive/refs/heads/main.zip", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SarawakMalayDataset(datasets.GeneratorBasedBuilder): |
|
"""This is experimental Sarawak Malay conversation data collected by \ |
|
Universiti Malaysia Sarawak for speech technology research, \ |
|
specifically speaker diarization. The data includes 38 conversations, \ |
|
each with two speakers, recorded on various devices and then standardized to mono, \ |
|
16000Khz, wav format.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "sptext" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"metadata": { |
|
"malay_text": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "sarawakmalay-main"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
id_counter = 0 |
|
filenames = filter(lambda x: x.endswith(".wav"), os.listdir(f"{filepath}/wav")) |
|
filenames = map(lambda x: x.replace(".wav", ""), filenames) |
|
|
|
os.makedirs(f"{filepath}/segmented", exist_ok=True) |
|
for i, filename in enumerate(filenames): |
|
info = textgrid.TextGrid.fromFile(f"{filepath}/TextGrid/{filename}.TextGrid") |
|
if len(info) == 3: |
|
sarawak_conversation, malay_conversation, speakers = info |
|
else: |
|
sarawak_conversation, malay_conversation, speakers, _ = info |
|
|
|
audio_file = audiosegment.from_file(f"{filepath}/wav/{filename}.wav").resample(sample_rate_Hz=16000) |
|
|
|
for sarawak_tg, malay_tg, speaker in zip(sarawak_conversation, malay_conversation, speakers): |
|
start, end, text = sarawak_tg.minTime, sarawak_tg.maxTime, sarawak_tg.mark |
|
malay_text = malay_tg.mark |
|
speaker_id = speaker.mark |
|
|
|
start_sec, end_sec = int(start * 1000), int(end * 1000) |
|
segment = audio_file[start_sec:end_sec] |
|
segement_filename = f"{filepath}/segmented/{filename}-{round(start, 0)}-{round(end, 0)}.wav" |
|
segment.export(segement_filename, format="wav") |
|
|
|
if self.config.schema == "source": |
|
yield id_counter, { |
|
"id": id_counter, |
|
"speaker_id": speaker_id, |
|
"path": f"{filepath}/wav/{filename}.wav", |
|
"audio": segement_filename, |
|
"text": text, |
|
"metadata": { |
|
"malay_text": malay_text, |
|
}, |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
yield id_counter, {"id": id_counter, "speaker_id": speaker_id, "path": f"{filepath}/wav/{filename}.wav", "audio": segement_filename, "text": text, "metadata": {"speaker_age": None, "speaker_gender": None}} |
|
|
|
id_counter += 1 |
|
|