Upload sleukrith_ocr.py with huggingface_hub
Browse files- sleukrith_ocr.py +249 -0
sleukrith_ocr.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import struct
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from seacrowd.utils import schemas
|
24 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
25 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{10.1145/3151509.3151510,
|
29 |
+
author = {Valy, Dona and Verleysen, Michel and Chhun, Sophea and Burie, Jean-Christophe},
|
30 |
+
title = {A New Khmer Palm Leaf Manuscript Dataset for Document Analysis and Recognition: SleukRith Set},
|
31 |
+
year = {2017},
|
32 |
+
isbn = {9781450353908},
|
33 |
+
publisher = {Association for Computing Machinery},
|
34 |
+
address = {New York, NY, USA},
|
35 |
+
url = {https://doi.org/10.1145/3151509.3151510},
|
36 |
+
doi = {10.1145/3151509.3151510},
|
37 |
+
booktitle = {Proceedings of the 4th International Workshop on Historical Document Imaging and Processing},
|
38 |
+
pages = {1-6},
|
39 |
+
numpages = {6},
|
40 |
+
location = {Kyoto, Japan},
|
41 |
+
series = {HIP '17}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DATASETNAME = "sleukrith_ocr"
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
SleukRith Set is the first dataset specifically created for Khmer palm leaf
|
49 |
+
manuscripts. The dataset consists of annotated data from 657 pages of digitized
|
50 |
+
palm leaf manuscripts which are selected arbitrarily from a large collection of
|
51 |
+
existing and also recently digitized images. The dataset contains three types of
|
52 |
+
data: isolated characters, words, and lines. Each type of data is annotated with
|
53 |
+
the ground truth information which is very useful for evaluating and serving as
|
54 |
+
a training set for common document analysis tasks such as character/text
|
55 |
+
recognition, word/line segmentation, and word spotting.
|
56 |
+
|
57 |
+
The character mapping (per label) is not explained anywhere in the dataset homepage,
|
58 |
+
thus the labels are simply numbered from 0 to 110, each corresponds to a distinct character.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://github.com/donavaly/SleukRith-Set"
|
62 |
+
|
63 |
+
_LANGUAGES = ["khm"]
|
64 |
+
|
65 |
+
_LICENSE = Licenses.UNKNOWN.value
|
66 |
+
|
67 |
+
_LOCAL = False
|
68 |
+
|
69 |
+
_URLS = {
|
70 |
+
# this URL corresponds to the raw unprocessed data (whole images); unused in this dataloader
|
71 |
+
"sleukrith-set": {
|
72 |
+
"images": "https://drive.google.com/uc?export=download&id=19JIxAjjXWuJ7mEyUl5-xRr2B8uOb-GKk", # 1GB
|
73 |
+
"annotated-data": "https://drive.google.com/uc?export=download&id=1Xi5ucRUb1e9TUU-nv2rCUYv2ANVsXYDk", # 11.7MB
|
74 |
+
},
|
75 |
+
# this URL corresponds to the processed data (per characters); used in this dataloader
|
76 |
+
"isolated-characters": {
|
77 |
+
"images_train": "https://drive.google.com/uc?export=download&id=1KXf5937l-Xu_sXsGPuQOgFt4zRaXlSJ5", # 249MB
|
78 |
+
"images_test": "https://drive.google.com/uc?export=download&id=1KSt5AiRIilRryh9GBcxyUUhnbiScdQ-9", # 199MB
|
79 |
+
"labels_train": "https://drive.google.com/uc?export=download&id=1IbmLg-4l-3BtRhprDWWvZjCp7lqap0Z-", # 442KB
|
80 |
+
"labels_test": "https://drive.google.com/uc?export=download&id=1GYcaUInkxtuuQps-qA38u-4zxK7HgrAB", # 354KB
|
81 |
+
},
|
82 |
+
}
|
83 |
+
|
84 |
+
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION]
|
85 |
+
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # imtext
|
86 |
+
|
87 |
+
_SOURCE_VERSION = "1.0.0"
|
88 |
+
|
89 |
+
_SEACROWD_VERSION = "2024.06.20"
|
90 |
+
|
91 |
+
|
92 |
+
class SleukRithSet(datasets.GeneratorBasedBuilder):
|
93 |
+
"""Annotated OCR dataset from 657 pages of digitized Khmer palm leaf manuscripts."""
|
94 |
+
|
95 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
96 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
97 |
+
|
98 |
+
BUILDER_CONFIGS = [
|
99 |
+
SEACrowdConfig(
|
100 |
+
name=f"{_DATASETNAME}_source",
|
101 |
+
version=SOURCE_VERSION,
|
102 |
+
description=f"{_DATASETNAME} source schema",
|
103 |
+
schema="source",
|
104 |
+
subset_id=_DATASETNAME,
|
105 |
+
),
|
106 |
+
SEACrowdConfig(
|
107 |
+
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
|
108 |
+
version=SEACROWD_VERSION,
|
109 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
110 |
+
schema=_SEACROWD_SCHEMA,
|
111 |
+
subset_id=_DATASETNAME,
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
116 |
+
|
117 |
+
def _info(self) -> datasets.DatasetInfo:
|
118 |
+
if self.config.schema == "source":
|
119 |
+
features = datasets.Features(
|
120 |
+
{
|
121 |
+
"image_path": datasets.Value("string"),
|
122 |
+
"label": datasets.ClassLabel(names=[i for i in range(111)]),
|
123 |
+
}
|
124 |
+
)
|
125 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
126 |
+
features = schemas.image_text_features(label_names=[i for i in range(111)])
|
127 |
+
|
128 |
+
return datasets.DatasetInfo(
|
129 |
+
description=_DESCRIPTION,
|
130 |
+
features=features,
|
131 |
+
homepage=_HOMEPAGE,
|
132 |
+
license=_LICENSE,
|
133 |
+
citation=_CITATION,
|
134 |
+
)
|
135 |
+
|
136 |
+
def module_exists(self, module_name):
|
137 |
+
try:
|
138 |
+
__import__(module_name)
|
139 |
+
except ImportError:
|
140 |
+
return False
|
141 |
+
else:
|
142 |
+
return True
|
143 |
+
|
144 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
145 |
+
"""Returns SplitGenerators."""
|
146 |
+
# check if gdown is installed
|
147 |
+
if self.module_exists("gdown"):
|
148 |
+
import gdown
|
149 |
+
else:
|
150 |
+
raise ImportError("Please install `gdown` to enable downloading data from google drive.")
|
151 |
+
|
152 |
+
# create custom data directory
|
153 |
+
data_dir = Path.cwd() / "data" / "sleukrith_ocr"
|
154 |
+
data_dir.mkdir(parents=True, exist_ok=True)
|
155 |
+
|
156 |
+
# reliable google drive downloader
|
157 |
+
data_paths = {}
|
158 |
+
for key, value in _URLS["isolated-characters"].items():
|
159 |
+
idx = value.rsplit("=", maxsplit=1)[-1]
|
160 |
+
output = f"{data_dir}/{key}"
|
161 |
+
data_paths[key] = Path(output)
|
162 |
+
|
163 |
+
if not Path(output).exists():
|
164 |
+
gdown.download(id=idx, output=output)
|
165 |
+
else:
|
166 |
+
print(f"File {output} already exists, skipping download.")
|
167 |
+
|
168 |
+
return [
|
169 |
+
datasets.SplitGenerator(
|
170 |
+
name=datasets.Split.TRAIN,
|
171 |
+
gen_kwargs={
|
172 |
+
"image_data": data_paths["images_train"],
|
173 |
+
"label_data": data_paths["labels_train"],
|
174 |
+
"split": "train",
|
175 |
+
},
|
176 |
+
),
|
177 |
+
datasets.SplitGenerator(
|
178 |
+
name=datasets.Split.TEST,
|
179 |
+
gen_kwargs={
|
180 |
+
"image_data": data_paths["images_test"],
|
181 |
+
"label_data": data_paths["labels_test"],
|
182 |
+
"split": "test",
|
183 |
+
},
|
184 |
+
),
|
185 |
+
]
|
186 |
+
|
187 |
+
def _generate_examples(self, image_data: Path, label_data: Path, split: str) -> Tuple[int, Dict]:
|
188 |
+
"""Yields examples as (key, example) tuples."""
|
189 |
+
# check if PIL is installed
|
190 |
+
if self.module_exists("PIL"):
|
191 |
+
from PIL import Image
|
192 |
+
else:
|
193 |
+
raise ImportError("Please install `pillow` to process images.")
|
194 |
+
|
195 |
+
# load images
|
196 |
+
with open(image_data, "rb") as file:
|
197 |
+
# read and unpack the first 12 bytes for metadata
|
198 |
+
width, height, nb_samples = struct.unpack(">iii", file.read(12))
|
199 |
+
|
200 |
+
images = []
|
201 |
+
for _ in range(nb_samples):
|
202 |
+
# read and convert binary data to np array and reshape
|
203 |
+
image_data = file.read(width * height)
|
204 |
+
image = np.frombuffer(image_data, dtype=np.uint8).reshape((height, width))
|
205 |
+
images.append(image)
|
206 |
+
|
207 |
+
# save images and store path
|
208 |
+
image_paths = []
|
209 |
+
for i, image in enumerate(images):
|
210 |
+
image_dir = Path.cwd() / "data" / "sleukrith_ocr" / split
|
211 |
+
image_dir.mkdir(exist_ok=True)
|
212 |
+
image_path = f"{image_dir}/image_{i}.png"
|
213 |
+
|
214 |
+
if not Path(image_path).exists():
|
215 |
+
Image.fromarray(image).save(image_path)
|
216 |
+
|
217 |
+
assert Path(image_path).exists(), f"Image {image_path} not found."
|
218 |
+
image_paths.append(image_path)
|
219 |
+
|
220 |
+
# load labels
|
221 |
+
with open(label_data, "rb") as file:
|
222 |
+
# read and unpack the first 8 bytes for nb_classes and nb_samples
|
223 |
+
nb_classes, nb_samples = struct.unpack(">ii", file.read(8))
|
224 |
+
assert nb_samples == len(image_paths), "Number of labels do not match number of images."
|
225 |
+
|
226 |
+
labels = []
|
227 |
+
for _ in range(nb_samples):
|
228 |
+
(label,) = struct.unpack(">i", file.read(4))
|
229 |
+
assert 0 <= label < nb_classes, f"Label {label} out of bounds."
|
230 |
+
labels.append(label)
|
231 |
+
|
232 |
+
if self.config.schema == "source":
|
233 |
+
for idx, example in enumerate(zip(image_paths, labels)):
|
234 |
+
yield idx, {
|
235 |
+
"image_path": example[0],
|
236 |
+
"label": example[1],
|
237 |
+
}
|
238 |
+
|
239 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
240 |
+
for idx, example in enumerate(zip(image_paths, labels)):
|
241 |
+
yield idx, {
|
242 |
+
"id": str(idx),
|
243 |
+
"image_paths": [example[0]],
|
244 |
+
"texts": None,
|
245 |
+
"metadata": {
|
246 |
+
"context": None,
|
247 |
+
"labels": [example[1]],
|
248 |
+
},
|
249 |
+
}
|