Datasets:

Languages:
English
ArXiv:
License:
stb_ext / stb_ext.py
holylovenia's picture
Upload stb_ext.py with huggingface_hub
c13b50a verified
import io
import conllu
import datasets
from seacrowd.utils.common_parser import load_ud_data_as_seacrowd_kb
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils import schemas
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks
_DATASETNAME = "stb_ext"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["eng"]
_LOCAL = False
_CITATION = """\
@article{wang2019genesis,
title={From genesis to creole language: Transfer learning for singlish universal dependencies parsing and POS tagging},
author={Wang, Hongmin and Yang, Jie and Zhang, Yue},
journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)},
volume={19},
number={1},
pages={1--29},
year={2019},
publisher={ACM New York, NY, USA}
}
"""
_DESCRIPTION = """\
We adopt the Universal Dependencies protocol for constructing the Singlish dependency treebank, both as a new resource
for the low-resource languages and to facilitate knowledge transfer from English. Briefly, the STB-EXT dataset offers
a 3-times larger training set, while keeping the same dev and test sets from STB-ACL. We provide treebanks with both
gold-standard as well as automatically generated POS tags.
"""
_HOMEPAGE = "https://github.com/wanghm92/Sing_Par/tree/master/TALLIP19_dataset/treebank"
_LICENSE = Licenses.MIT.value
_PREFIX = "https://raw.githubusercontent.com/wanghm92/Sing_Par/master/TALLIP19_dataset/treebank/"
_URLS = {
"gold_pos": {
"train": _PREFIX + "gold_pos/train.ext.conll",
},
"en_ud_autopos": {"train": _PREFIX + "en-ud-autopos/en-ud-train.conllu.autoupos", "validation": _PREFIX + "en-ud-autopos/en-ud-dev.conllu.ann.auto.epoch24.upos", "test": _PREFIX + "en-ud-autopos/en-ud-test.conllu.ann.auto.epoch24.upos"},
"auto_pos_multiview": {
"train": _PREFIX + "auto_pos/multiview/train.autopos.multiview.conll",
"validation": _PREFIX + "auto_pos/multiview/dev.autopos.multiview.conll",
"test": _PREFIX + "auto_pos/multiview/test.autopos.multiview.conll",
},
"auto_pos_stack": {
"train": _PREFIX + "auto_pos/stack/train.autopos.stack.conll",
"validation": _PREFIX + "auto_pos/stack/dev.autopos.stack.conll",
"test": _PREFIX + "auto_pos/stack/test.autopos.stack.conll",
},
}
_POSTAGS = ["ADJ", "ADP", "ADV", "AUX", "CONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "root"]
_SUPPORTED_TASKS = [Tasks.POS_TAGGING, Tasks.DEPENDENCY_PARSING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def config_constructor(subset_id, schema, version):
return SEACrowdConfig(name=f"{_DATASETNAME}_{subset_id}_{schema}",
version=datasets.Version(version), description=_DESCRIPTION,
schema=schema, subset_id=subset_id)
class StbExtDataset(datasets.GeneratorBasedBuilder):
"""This is a seacrowd dataloader for the STB-EXT dataset, which offers a 3-times larger training set, while keeping
the same dev and test sets from STB-ACL. It provides treebanks with both gold-standard and automatically generated POS tags."""
BUILDER_CONFIGS = [
# source
config_constructor(subset_id="auto_pos_stack", schema="source", version=_SOURCE_VERSION),
config_constructor(subset_id="auto_pos_multiview", schema="source", version=_SOURCE_VERSION),
config_constructor(subset_id="en_ud_autopos", schema="source", version=_SOURCE_VERSION),
config_constructor(subset_id="gold_pos", schema="source", version=_SOURCE_VERSION),
# seq_label
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
config_constructor(subset_id="gold_pos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
# dependency parsing
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_kb", version=_SEACROWD_VERSION),
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_kb", version=_SEACROWD_VERSION),
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
config_constructor(subset_id="gold_pos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_pos_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
# metadata
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_en": datasets.Value("string"),
# tokens
"id": [datasets.Value("string")],
"form": [datasets.Value("string")],
"lemma": [datasets.Value("string")],
"upos": [datasets.Value("string")],
"xpos": [datasets.Value("string")],
"feats": [datasets.Value("string")],
"head": [datasets.Value("string")],
"deprel": [datasets.Value("string")],
"deps": [datasets.Value("string")],
"misc": [datasets.Value("string")],
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(label_names=_POSTAGS)
elif self.config.schema == "seacrowd_kb":
features = schemas.kb_features
else:
raise ValueError(f"Invalid config: {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
""" "return splitGenerators"""
urls = _URLS[self.config.subset_id]
downloaded_files = dl_manager.download_and_extract(urls)
splits = []
if "train" in downloaded_files:
splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}))
if "validation" in downloaded_files:
splits.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}))
if "test" in downloaded_files:
splits.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}))
return splits
def _generate_examples(self, filepath):
def process_buffer(TextIO):
BOM = "\ufeff"
buffer = io.StringIO()
for line in TextIO:
line = line.replace(BOM, "") if BOM in line else line
buffer.write(line)
buffer.seek(0)
return buffer
with open(filepath, "r", encoding="utf-8") as data_file:
tokenlist = list(conllu.parse_incr(process_buffer(data_file)))
data_instances = []
for idx, sent in enumerate(tokenlist):
idx = sent.metadata["sent_id"] if "sent_id" in sent.metadata else idx
tokens = [token["form"] for token in sent]
txt = sent.metadata["text"] if "text" in sent.metadata else " ".join(tokens)
example = {
# meta
"sent_id": str(idx),
"text": txt,
"text_en": txt,
# tokens
"id": [token["id"] for token in sent],
"form": [token["form"] for token in sent],
"lemma": [token["lemma"] for token in sent],
"upos": [token["upos"] for token in sent],
"xpos": [token["xpos"] for token in sent],
"feats": [str(token["feats"]) for token in sent],
"head": [str(token["head"]) for token in sent],
"deprel": [str(token["deprel"]) for token in sent],
"deps": [str(token["deps"]) for token in sent],
"misc": [str(token["misc"]) for token in sent]
}
data_instances.append(example)
if self.config.schema == "source":
pass
if self.config.schema == "seacrowd_seq_label":
data_instances = list(
map(
lambda d: {
"id": d["sent_id"],
"tokens": d["form"],
"labels": d["upos"],
},
data_instances,
)
)
if self.config.schema == "seacrowd_kb":
data_instances = load_ud_data_as_seacrowd_kb(filepath, data_instances)
for key, exam in enumerate(data_instances):
yield key, exam