holylovenia
commited on
Commit
•
c13b50a
1
Parent(s):
a129c9f
Upload stb_ext.py with huggingface_hub
Browse files- stb_ext.py +195 -0
stb_ext.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
|
3 |
+
import conllu
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from seacrowd.utils.common_parser import load_ud_data_as_seacrowd_kb
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks
|
10 |
+
|
11 |
+
_DATASETNAME = "stb_ext"
|
12 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
13 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
14 |
+
|
15 |
+
_LANGUAGES = ["eng"]
|
16 |
+
_LOCAL = False
|
17 |
+
_CITATION = """\
|
18 |
+
@article{wang2019genesis,
|
19 |
+
title={From genesis to creole language: Transfer learning for singlish universal dependencies parsing and POS tagging},
|
20 |
+
author={Wang, Hongmin and Yang, Jie and Zhang, Yue},
|
21 |
+
journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)},
|
22 |
+
volume={19},
|
23 |
+
number={1},
|
24 |
+
pages={1--29},
|
25 |
+
year={2019},
|
26 |
+
publisher={ACM New York, NY, USA}
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
We adopt the Universal Dependencies protocol for constructing the Singlish dependency treebank, both as a new resource
|
32 |
+
for the low-resource languages and to facilitate knowledge transfer from English. Briefly, the STB-EXT dataset offers
|
33 |
+
a 3-times larger training set, while keeping the same dev and test sets from STB-ACL. We provide treebanks with both
|
34 |
+
gold-standard as well as automatically generated POS tags.
|
35 |
+
"""
|
36 |
+
|
37 |
+
_HOMEPAGE = "https://github.com/wanghm92/Sing_Par/tree/master/TALLIP19_dataset/treebank"
|
38 |
+
|
39 |
+
_LICENSE = Licenses.MIT.value
|
40 |
+
|
41 |
+
_PREFIX = "https://raw.githubusercontent.com/wanghm92/Sing_Par/master/TALLIP19_dataset/treebank/"
|
42 |
+
_URLS = {
|
43 |
+
"gold_pos": {
|
44 |
+
"train": _PREFIX + "gold_pos/train.ext.conll",
|
45 |
+
},
|
46 |
+
"en_ud_autopos": {"train": _PREFIX + "en-ud-autopos/en-ud-train.conllu.autoupos", "validation": _PREFIX + "en-ud-autopos/en-ud-dev.conllu.ann.auto.epoch24.upos", "test": _PREFIX + "en-ud-autopos/en-ud-test.conllu.ann.auto.epoch24.upos"},
|
47 |
+
"auto_pos_multiview": {
|
48 |
+
"train": _PREFIX + "auto_pos/multiview/train.autopos.multiview.conll",
|
49 |
+
"validation": _PREFIX + "auto_pos/multiview/dev.autopos.multiview.conll",
|
50 |
+
"test": _PREFIX + "auto_pos/multiview/test.autopos.multiview.conll",
|
51 |
+
},
|
52 |
+
"auto_pos_stack": {
|
53 |
+
"train": _PREFIX + "auto_pos/stack/train.autopos.stack.conll",
|
54 |
+
"validation": _PREFIX + "auto_pos/stack/dev.autopos.stack.conll",
|
55 |
+
"test": _PREFIX + "auto_pos/stack/test.autopos.stack.conll",
|
56 |
+
},
|
57 |
+
}
|
58 |
+
_POSTAGS = ["ADJ", "ADP", "ADV", "AUX", "CONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "root"]
|
59 |
+
_SUPPORTED_TASKS = [Tasks.POS_TAGGING, Tasks.DEPENDENCY_PARSING]
|
60 |
+
_SOURCE_VERSION = "1.0.0"
|
61 |
+
_SEACROWD_VERSION = "2024.06.20"
|
62 |
+
|
63 |
+
|
64 |
+
def config_constructor(subset_id, schema, version):
|
65 |
+
return SEACrowdConfig(name=f"{_DATASETNAME}_{subset_id}_{schema}",
|
66 |
+
version=datasets.Version(version), description=_DESCRIPTION,
|
67 |
+
schema=schema, subset_id=subset_id)
|
68 |
+
|
69 |
+
|
70 |
+
class StbExtDataset(datasets.GeneratorBasedBuilder):
|
71 |
+
"""This is a seacrowd dataloader for the STB-EXT dataset, which offers a 3-times larger training set, while keeping
|
72 |
+
the same dev and test sets from STB-ACL. It provides treebanks with both gold-standard and automatically generated POS tags."""
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
# source
|
76 |
+
config_constructor(subset_id="auto_pos_stack", schema="source", version=_SOURCE_VERSION),
|
77 |
+
config_constructor(subset_id="auto_pos_multiview", schema="source", version=_SOURCE_VERSION),
|
78 |
+
config_constructor(subset_id="en_ud_autopos", schema="source", version=_SOURCE_VERSION),
|
79 |
+
config_constructor(subset_id="gold_pos", schema="source", version=_SOURCE_VERSION),
|
80 |
+
# seq_label
|
81 |
+
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
|
82 |
+
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
|
83 |
+
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
|
84 |
+
config_constructor(subset_id="gold_pos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION),
|
85 |
+
# dependency parsing
|
86 |
+
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_kb", version=_SEACROWD_VERSION),
|
87 |
+
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_kb", version=_SEACROWD_VERSION),
|
88 |
+
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
|
89 |
+
config_constructor(subset_id="gold_pos", schema="seacrowd_kb", version=_SEACROWD_VERSION),
|
90 |
+
]
|
91 |
+
|
92 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_pos_source"
|
93 |
+
|
94 |
+
def _info(self):
|
95 |
+
if self.config.schema == "source":
|
96 |
+
features = datasets.Features(
|
97 |
+
{
|
98 |
+
# metadata
|
99 |
+
"sent_id": datasets.Value("string"),
|
100 |
+
"text": datasets.Value("string"),
|
101 |
+
"text_en": datasets.Value("string"),
|
102 |
+
# tokens
|
103 |
+
"id": [datasets.Value("string")],
|
104 |
+
"form": [datasets.Value("string")],
|
105 |
+
"lemma": [datasets.Value("string")],
|
106 |
+
"upos": [datasets.Value("string")],
|
107 |
+
"xpos": [datasets.Value("string")],
|
108 |
+
"feats": [datasets.Value("string")],
|
109 |
+
"head": [datasets.Value("string")],
|
110 |
+
"deprel": [datasets.Value("string")],
|
111 |
+
"deps": [datasets.Value("string")],
|
112 |
+
"misc": [datasets.Value("string")],
|
113 |
+
}
|
114 |
+
)
|
115 |
+
elif self.config.schema == "seacrowd_seq_label":
|
116 |
+
features = schemas.seq_label_features(label_names=_POSTAGS)
|
117 |
+
elif self.config.schema == "seacrowd_kb":
|
118 |
+
features = schemas.kb_features
|
119 |
+
else:
|
120 |
+
raise ValueError(f"Invalid config: {self.config.schema}")
|
121 |
+
|
122 |
+
return datasets.DatasetInfo(
|
123 |
+
description=_DESCRIPTION,
|
124 |
+
features=features,
|
125 |
+
homepage=_HOMEPAGE,
|
126 |
+
license=_LICENSE,
|
127 |
+
citation=_CITATION,
|
128 |
+
)
|
129 |
+
|
130 |
+
def _split_generators(self, dl_manager):
|
131 |
+
""" "return splitGenerators"""
|
132 |
+
urls = _URLS[self.config.subset_id]
|
133 |
+
downloaded_files = dl_manager.download_and_extract(urls)
|
134 |
+
splits = []
|
135 |
+
if "train" in downloaded_files:
|
136 |
+
splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}))
|
137 |
+
if "validation" in downloaded_files:
|
138 |
+
splits.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}))
|
139 |
+
if "test" in downloaded_files:
|
140 |
+
splits.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}))
|
141 |
+
return splits
|
142 |
+
|
143 |
+
def _generate_examples(self, filepath):
|
144 |
+
def process_buffer(TextIO):
|
145 |
+
BOM = "\ufeff"
|
146 |
+
buffer = io.StringIO()
|
147 |
+
for line in TextIO:
|
148 |
+
line = line.replace(BOM, "") if BOM in line else line
|
149 |
+
buffer.write(line)
|
150 |
+
buffer.seek(0)
|
151 |
+
return buffer
|
152 |
+
|
153 |
+
with open(filepath, "r", encoding="utf-8") as data_file:
|
154 |
+
tokenlist = list(conllu.parse_incr(process_buffer(data_file)))
|
155 |
+
data_instances = []
|
156 |
+
for idx, sent in enumerate(tokenlist):
|
157 |
+
idx = sent.metadata["sent_id"] if "sent_id" in sent.metadata else idx
|
158 |
+
tokens = [token["form"] for token in sent]
|
159 |
+
txt = sent.metadata["text"] if "text" in sent.metadata else " ".join(tokens)
|
160 |
+
example = {
|
161 |
+
# meta
|
162 |
+
"sent_id": str(idx),
|
163 |
+
"text": txt,
|
164 |
+
"text_en": txt,
|
165 |
+
# tokens
|
166 |
+
"id": [token["id"] for token in sent],
|
167 |
+
"form": [token["form"] for token in sent],
|
168 |
+
"lemma": [token["lemma"] for token in sent],
|
169 |
+
"upos": [token["upos"] for token in sent],
|
170 |
+
"xpos": [token["xpos"] for token in sent],
|
171 |
+
"feats": [str(token["feats"]) for token in sent],
|
172 |
+
"head": [str(token["head"]) for token in sent],
|
173 |
+
"deprel": [str(token["deprel"]) for token in sent],
|
174 |
+
"deps": [str(token["deps"]) for token in sent],
|
175 |
+
"misc": [str(token["misc"]) for token in sent]
|
176 |
+
}
|
177 |
+
data_instances.append(example)
|
178 |
+
|
179 |
+
if self.config.schema == "source":
|
180 |
+
pass
|
181 |
+
if self.config.schema == "seacrowd_seq_label":
|
182 |
+
data_instances = list(
|
183 |
+
map(
|
184 |
+
lambda d: {
|
185 |
+
"id": d["sent_id"],
|
186 |
+
"tokens": d["form"],
|
187 |
+
"labels": d["upos"],
|
188 |
+
},
|
189 |
+
data_instances,
|
190 |
+
)
|
191 |
+
)
|
192 |
+
if self.config.schema == "seacrowd_kb":
|
193 |
+
data_instances = load_ud_data_as_seacrowd_kb(filepath, data_instances)
|
194 |
+
for key, exam in enumerate(data_instances):
|
195 |
+
yield key, exam
|