File size: 7,641 Bytes
59e1216
 
 
 
 
 
 
16670b9
 
 
59e1216
 
 
 
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
16670b9
 
 
59e1216
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16670b9
59e1216
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import csv
import os
from pathlib import Path
from typing import List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "su_id_tts"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
  author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
  title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
  year=2018,
  booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
  pages={66--70},
  doi={10.21437/SLTU.2018-14}
}
"""

_DESCRIPTION = """\
This data set contains high-quality transcribed audio data for Sundanese. The data set consists of wave files, and a TSV file. The file line_index.tsv contains a filename and the transcription of audio in the file. Each filename is prepended with a speaker identification number.
The data set has been manually quality checked, but there might still be errors.
This dataset was collected by Google in collaboration with Universitas Pendidikan Indonesia.
"""

_HOMEPAGE = "http://openslr.org/44/"

_LICENSE = "CC BY-SA 4.0"

_URLs = {
    _DATASETNAME: {
        "female": "https://www.openslr.org/resources/44/su_id_female.zip",
        "male": "https://www.openslr.org/resources/44/su_id_male.zip",
    }
}

_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class SuIdTTS(datasets.GeneratorBasedBuilder):
    """su_id_tts contains high-quality Multi-speaker TTS data for Sundanese (SU-ID)."""

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="su_id_tts_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="SU_ID_TTS source schema",
            schema="source",
            subset_id="su_id_tts",
        ),
        SEACrowdConfig(
            name="su_id_tts_seacrowd_sptext",
            version=datasets.Version(_SEACROWD_VERSION),
            description="SU_ID_TTS Nusantara schema",
            schema="seacrowd_sptext",
            subset_id="su_id_tts",
        ),
    ]

    DEFAULT_CONFIG_NAME = "su_id_tts_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"]))
        female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "male_filepath": male_path,
                    "female_filepath": female_path,
                },
            ),
        ]

    def _generate_examples(self, male_filepath: Path, female_filepath: Path):

        if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
            tsv_m = os.path.join(male_filepath, "su_id_male", "line_index.tsv")
            tsv_f = os.path.join(female_filepath, "su_id_female", "line_index.tsv")

            with open(tsv_m, "r") as file:
                tsv_m_data = csv.reader(file, delimiter="\t")
                for line in tsv_m_data:
                    spk_trans_info = line[0].split("_")
                    if self.config.schema == "source":
                        ex = {
                            "id": line[0],
                            "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
                            "path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
                            "audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
                            "text": line[2],
                            "gender": spk_trans_info[0][2],
                        }
                        yield line[0], ex

                    elif self.config.schema == "seacrowd_sptext":
                        ex = {
                            "id": line[0],
                            "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
                            "path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
                            "audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
                            "text": line[2],
                            "metadata": {
                                "speaker_age": None,
                                "speaker_gender": spk_trans_info[0][2],
                            },
                        }
                        yield line[0], ex

            with open(tsv_f, "r") as file:
                tsv_f_data = csv.reader(file, delimiter="\t")
                for line in tsv_f_data:
                    spk_trans_info = line[0].split("_")
                    if self.config.schema == "source":
                        ex = {
                            "id": line[0],
                            "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
                            "path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
                            "audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
                            "text": line[2],
                            "gender": spk_trans_info[0][2],
                        }
                        yield line[0], ex

                    elif self.config.schema == "seacrowd_sptext":
                        ex = {
                            "id": line[0],
                            "speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
                            "path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
                            "audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
                            "text": line[2],
                            "metadata": {
                                "speaker_age": None,
                                "speaker_gender": spk_trans_info[0][2],
                            },
                        }
                        yield line[0], ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")