File size: 7,641 Bytes
59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 16670b9 59e1216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import csv
import os
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "su_id_tts"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={66--70},
doi={10.21437/SLTU.2018-14}
}
"""
_DESCRIPTION = """\
This data set contains high-quality transcribed audio data for Sundanese. The data set consists of wave files, and a TSV file. The file line_index.tsv contains a filename and the transcription of audio in the file. Each filename is prepended with a speaker identification number.
The data set has been manually quality checked, but there might still be errors.
This dataset was collected by Google in collaboration with Universitas Pendidikan Indonesia.
"""
_HOMEPAGE = "http://openslr.org/44/"
_LICENSE = "CC BY-SA 4.0"
_URLs = {
_DATASETNAME: {
"female": "https://www.openslr.org/resources/44/su_id_female.zip",
"male": "https://www.openslr.org/resources/44/su_id_male.zip",
}
}
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SuIdTTS(datasets.GeneratorBasedBuilder):
"""su_id_tts contains high-quality Multi-speaker TTS data for Sundanese (SU-ID)."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="su_id_tts_source",
version=datasets.Version(_SOURCE_VERSION),
description="SU_ID_TTS source schema",
schema="source",
subset_id="su_id_tts",
),
SEACrowdConfig(
name="su_id_tts_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="SU_ID_TTS Nusantara schema",
schema="seacrowd_sptext",
subset_id="su_id_tts",
),
]
DEFAULT_CONFIG_NAME = "su_id_tts_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"gender": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"]))
female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"male_filepath": male_path,
"female_filepath": female_path,
},
),
]
def _generate_examples(self, male_filepath: Path, female_filepath: Path):
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
tsv_m = os.path.join(male_filepath, "su_id_male", "line_index.tsv")
tsv_f = os.path.join(female_filepath, "su_id_female", "line_index.tsv")
with open(tsv_m, "r") as file:
tsv_m_data = csv.reader(file, delimiter="\t")
for line in tsv_m_data:
spk_trans_info = line[0].split("_")
if self.config.schema == "source":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"gender": spk_trans_info[0][2],
}
yield line[0], ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(male_filepath, "su_id_male", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"metadata": {
"speaker_age": None,
"speaker_gender": spk_trans_info[0][2],
},
}
yield line[0], ex
with open(tsv_f, "r") as file:
tsv_f_data = csv.reader(file, delimiter="\t")
for line in tsv_f_data:
spk_trans_info = line[0].split("_")
if self.config.schema == "source":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"gender": spk_trans_info[0][2],
}
yield line[0], ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": line[0],
"speaker_id": spk_trans_info[0] + "_" + spk_trans_info[1],
"path": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"audio": os.path.join(female_filepath, "su_id_female", "wavs", "{}.wav".format(line[0])),
"text": line[2],
"metadata": {
"speaker_age": None,
"speaker_gender": spk_trans_info[0][2],
},
}
yield line[0], ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|