|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@article{galinato-etal-2023-context, |
|
title="Context-Based Profanity Detection and Censorship Using Bidirectional Encoder Representations from Transformers", |
|
author="Galinato, Valfrid and Amores, Lawrence and Magsino, Gino Ben and Sumawang, David Rafael", |
|
month="jan", |
|
year="2023" |
|
url="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4341604" |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["tgl"] |
|
_DATASETNAME = "tgl_profanity" |
|
_DESCRIPTION = """\ |
|
This dataset contains 13.8k Tagalog sentences containing profane words, together |
|
with binary labels denoting whether or not the sentence conveys profanity / |
|
abuse / hate speech. The data was scraped from Twitter using a Python library |
|
called SNScrape and annotated manually by a panel of native Filipino speakers. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/mginoben/tagalog-profanity-dataset/" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_SUPPORTED_TASKS = [Tasks.ABUSIVE_LANGUAGE_PREDICTION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/mginoben/tagalog-profanity-dataset/resolve/main/train.csv", |
|
"val": "https://huggingface.co/datasets/mginoben/tagalog-profanity-dataset/resolve/main/val.csv", |
|
} |
|
|
|
|
|
class TagalogProfanityDataset(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
CLASS_LABELS = ["1", "0"] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("int64"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS) |
|
else: |
|
raise ValueError(f"Invalid config name: {self.config.schema}") |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["val"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
with open(filepath, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f, delimiter=",") |
|
next(csv_reader, None) |
|
for idx, row in enumerate(csv_reader): |
|
text, label = row |
|
if self.config.schema == "source": |
|
example = {"text": text, "label": int(label)} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = {"id": idx, "text": text, "label": int(label)} |
|
yield idx, example |
|
|