holylovenia
commited on
Commit
•
2e3a93e
1
Parent(s):
d366fbf
Upload thai_elderly_speech.py with huggingface_hub
Browse files- thai_elderly_speech.py +184 -0
thai_elderly_speech.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
|
24 |
+
Licenses, Tasks)
|
25 |
+
|
26 |
+
_CITATION = "" # no dataset/paper citation found
|
27 |
+
|
28 |
+
_DATASETNAME = "thai_elderly_speech"
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
The Thai Elderly Speech dataset by Data Wow and VISAI Version 1 dataset aims at
|
32 |
+
advancing Automatic Speech Recognition (ASR) technology specifically for the
|
33 |
+
elderly population. Researchers can use this dataset to advance ASR technology
|
34 |
+
for healthcare and smart home applications. The dataset consists of 19,200 audio
|
35 |
+
files, totaling 17 hours and 11 minutes of recorded speech. The files are
|
36 |
+
divided into 2 categories: Healthcare (relating to medical issues and services
|
37 |
+
in 30 medical categories) and Smart Home (relating to smart home devices in 7
|
38 |
+
household contexts). The dataset contains 5,156 unique sentences spoken by 32
|
39 |
+
seniors (10 males and 22 females), aged 57-60 years old (average age of 63
|
40 |
+
years).
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/tag/v1.0.0"
|
44 |
+
|
45 |
+
_LANGUAGES = ["tha"]
|
46 |
+
_SUBSETS = ["healthcare", "smarthome"]
|
47 |
+
|
48 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
49 |
+
|
50 |
+
_LOCAL = False
|
51 |
+
|
52 |
+
_URLS = [
|
53 |
+
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.001",
|
54 |
+
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.002",
|
55 |
+
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.003",
|
56 |
+
]
|
57 |
+
|
58 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_TO_TEXT_TRANSLATION]
|
59 |
+
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # sptext
|
60 |
+
|
61 |
+
_SOURCE_VERSION = "1.0.0"
|
62 |
+
|
63 |
+
_SEACROWD_VERSION = "2024.06.20"
|
64 |
+
|
65 |
+
|
66 |
+
class ThaiElderlySpeechDataset(datasets.GeneratorBasedBuilder):
|
67 |
+
"""A speech dataset from elderly Thai speakers."""
|
68 |
+
|
69 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
70 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
71 |
+
|
72 |
+
BUILDER_CONFIGS = []
|
73 |
+
for subset in _SUBSETS:
|
74 |
+
BUILDER_CONFIGS += [
|
75 |
+
SEACrowdConfig(
|
76 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
77 |
+
version=SOURCE_VERSION,
|
78 |
+
description=f"{_DATASETNAME} {subset} source schema",
|
79 |
+
schema="source",
|
80 |
+
subset_id=subset,
|
81 |
+
),
|
82 |
+
SEACrowdConfig(
|
83 |
+
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
|
84 |
+
version=SEACROWD_VERSION,
|
85 |
+
description=f"{_DATASETNAME} {subset} SEACrowd schema",
|
86 |
+
schema=_SEACROWD_SCHEMA,
|
87 |
+
subset_id=subset,
|
88 |
+
),
|
89 |
+
]
|
90 |
+
|
91 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_healthcare_source"
|
92 |
+
|
93 |
+
def _info(self) -> datasets.DatasetInfo:
|
94 |
+
if self.config.schema == "source":
|
95 |
+
features = datasets.Features(
|
96 |
+
{
|
97 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
98 |
+
"filename": datasets.Value("string"),
|
99 |
+
"transcription": datasets.Value("string"),
|
100 |
+
"speaker": {
|
101 |
+
"id": datasets.Value("string"),
|
102 |
+
"age": datasets.Value("int32"),
|
103 |
+
"gender": datasets.Value("string"),
|
104 |
+
},
|
105 |
+
}
|
106 |
+
)
|
107 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
108 |
+
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # ssp_features
|
109 |
+
|
110 |
+
return datasets.DatasetInfo(
|
111 |
+
description=_DESCRIPTION,
|
112 |
+
features=features,
|
113 |
+
homepage=_HOMEPAGE,
|
114 |
+
license=_LICENSE,
|
115 |
+
citation=_CITATION,
|
116 |
+
)
|
117 |
+
|
118 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
119 |
+
"""Returns SplitGenerators."""
|
120 |
+
zip_files = list(map(Path, dl_manager.download(_URLS)))
|
121 |
+
zip_combined = zip_files[0].parent / "thai_elderly_speech.zip"
|
122 |
+
|
123 |
+
with open(str(zip_combined), "wb") as out_file:
|
124 |
+
for zip_file in zip_files:
|
125 |
+
with open(str(zip_file), "rb") as in_file:
|
126 |
+
out_file.write(in_file.read())
|
127 |
+
|
128 |
+
data_file = Path(dl_manager.extract(zip_combined)) / "Dataset"
|
129 |
+
subset_id = self.config.subset_id
|
130 |
+
|
131 |
+
return [
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.TRAIN,
|
134 |
+
gen_kwargs={
|
135 |
+
"speaker_file": data_file / "speaker_demography.json",
|
136 |
+
"audio_dir": data_file / subset_id.title() / "Record",
|
137 |
+
"transcript_file": data_file / subset_id.title() / "transcription.json",
|
138 |
+
},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, speaker_file: Path, audio_dir: Path, transcript_file: Path) -> Tuple[int, Dict]:
|
143 |
+
"""Yields examples as (key, example) tuples."""
|
144 |
+
# read speaker information
|
145 |
+
with open(speaker_file, "r", encoding="utf-8") as f:
|
146 |
+
speaker_info = json.load(f)
|
147 |
+
speaker_dict = {speaker["speaker_id"]: {"age": speaker["age"], "gender": speaker["gender"]} for speaker in speaker_info}
|
148 |
+
|
149 |
+
# read transcript information
|
150 |
+
with open(transcript_file, "r", encoding="utf-8") as f:
|
151 |
+
annotations = json.load(f)
|
152 |
+
|
153 |
+
for idx, instance in enumerate(annotations):
|
154 |
+
transcript = instance["transcript"]
|
155 |
+
|
156 |
+
speaker_id = instance["speaker_id"]
|
157 |
+
speaker_info = speaker_dict[int(speaker_id)]
|
158 |
+
|
159 |
+
filename = instance["filename"]
|
160 |
+
audio_file = str(audio_dir / (filename + ".wav"))
|
161 |
+
|
162 |
+
if self.config.schema == "source":
|
163 |
+
yield idx, {
|
164 |
+
"audio": audio_file,
|
165 |
+
"filename": filename,
|
166 |
+
"transcription": transcript,
|
167 |
+
"speaker": {
|
168 |
+
"id": speaker_id,
|
169 |
+
"age": speaker_info["age"],
|
170 |
+
"gender": speaker_info["gender"],
|
171 |
+
},
|
172 |
+
}
|
173 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
174 |
+
yield idx, {
|
175 |
+
"id": idx,
|
176 |
+
"path": audio_file,
|
177 |
+
"audio": audio_file,
|
178 |
+
"text": transcript,
|
179 |
+
"speaker_id": speaker_id,
|
180 |
+
"metadata": {
|
181 |
+
"speaker_age": speaker_info["age"],
|
182 |
+
"speaker_gender": speaker_info["gender"],
|
183 |
+
},
|
184 |
+
}
|