File size: 6,730 Bytes
78c67ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The dataset consists of individual news articles, each corresponding to a unique URL at the
Thai government website (https://www.thaigov.go.th/). The dataset structure is as follows: a topic header is
followed by the content of the news article, which is then succeeded by a blank line and the source URL
"""
import glob
import os
import re
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import jsonlines
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{,
author = {PyThaiNLP},
title = {thaigov-v2-corpus},
journal = {},
volume = {},
year = {2023},
url = {https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master},
doi = {},
biburl = {},
bibsource = {}
}
"""
_DATASETNAME = "thaigov"
_DESCRIPTION = """\
This dataset is a corpus from ThaiGov.
"""
_HOMEPAGE = "https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master/data"
_LANGUAGES = ["tha"]
_LICENSE = Licenses.PDDL.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/PyThaiNLP/thaigov-v2-corpus/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
_SOURCE_VERSION = "2.0.0"
_SEACROWD_VERSION = "2024.06.20"
class NewDataset(datasets.GeneratorBasedBuilder):
"""This dataset is a corpus from ThaiGov, can be used for summarization tasks."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="thaigov_source",
version=SOURCE_VERSION,
description="thaigov source schema",
schema="source",
subset_id="thaigov",
),
SEACrowdConfig(
name="thaigov_seacrowd_t2t",
version=SEACROWD_VERSION,
description="thaigov SEACrowd schema",
schema="seacrowd_t2t",
subset_id="thaigov",
),
]
DEFAULT_CONFIG_NAME = "thaigov_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"src": datasets.Value("string"),
"tgt": datasets.Value("string"),
"url": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
# Since the data is stored based on date extracted, it will follow the pattern data/year/month/day/{article_names}.txt
list_all_txt_files = list(glob.glob(os.path.join(data_dir, "thaigov-v2-corpus-master", "data", "*", "*", "*", "*.txt")))
all_data = []
counter = 0
for i in list_all_txt_files:
d = self._read_file(i)
all_data.append({"id": counter, "src": d["context"], "tgt": d["title"], "url": d["url"]})
counter += 1
self._write_jsonl(data_dir + "/train.jsonl", all_data)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
i = 0
with jsonlines.open(filepath) as f:
for each_data in f.iter():
ex = {
"id": each_data["id"],
"src": each_data["src"],
"tgt": each_data["tgt"],
"url": each_data["url"],
}
yield i, ex
i += 1
elif self.config.schema == "seacrowd_t2t":
i = 0
with jsonlines.open(filepath) as f:
for each_data in f.iter():
ex = {"id": each_data["id"], "text_1": each_data["src"], "text_2": each_data["tgt"], "text_1_name": "input_document", "text_2_name": "output_summary"}
yield i, ex
i += 1
def _read_file(self, path):
text = {"title": "", "context": "", "url": ""}
page_view_line = 0
with open(path, "r", encoding="utf-8-sig") as f:
for n, line in enumerate(f):
line = line.strip()
if n == 0: # title line
text["title"] = line.strip()
else:
if line:
if re.match(r"^[\d,]+$", line):
page_view_line = n
continue
if line == "พิมพ์" or page_view_line and page_view_line < n: # skip 'print'
continue
if re.match(r"^ที่มา : http", line):
text["url"] = line.strip().split(" ")[-1]
else:
text["context"] += line.strip().replace("\xa0", "") + "\n"
return text
def _write_jsonl(self, filepath, values):
with jsonlines.open(filepath, "w") as writer:
for line in values:
writer.write(line)
|