# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The dataset consists of individual news articles, each corresponding to a unique URL at the Thai government website (https://www.thaigov.go.th/). The dataset structure is as follows: a topic header is followed by the content of the news article, which is then succeeded by a blank line and the source URL """ import glob import os import re from pathlib import Path from typing import Dict, List, Tuple import datasets import jsonlines from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @article{, author = {PyThaiNLP}, title = {thaigov-v2-corpus}, journal = {}, volume = {}, year = {2023}, url = {https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master}, doi = {}, biburl = {}, bibsource = {} } """ _DATASETNAME = "thaigov" _DESCRIPTION = """\ This dataset is a corpus from ThaiGov. """ _HOMEPAGE = "https://github.com/PyThaiNLP/thaigov-v2-corpus/tree/master/data" _LANGUAGES = ["tha"] _LICENSE = Licenses.PDDL.value _LOCAL = False _URLS = { _DATASETNAME: "https://github.com/PyThaiNLP/thaigov-v2-corpus/archive/refs/heads/master.zip", } _SUPPORTED_TASKS = [Tasks.SUMMARIZATION] _SOURCE_VERSION = "2.0.0" _SEACROWD_VERSION = "2024.06.20" class NewDataset(datasets.GeneratorBasedBuilder): """This dataset is a corpus from ThaiGov, can be used for summarization tasks.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="thaigov_source", version=SOURCE_VERSION, description="thaigov source schema", schema="source", subset_id="thaigov", ), SEACrowdConfig( name="thaigov_seacrowd_t2t", version=SEACROWD_VERSION, description="thaigov SEACrowd schema", schema="seacrowd_t2t", subset_id="thaigov", ), ] DEFAULT_CONFIG_NAME = "thaigov_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "src": datasets.Value("string"), "tgt": datasets.Value("string"), "url": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_t2t": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) # Since the data is stored based on date extracted, it will follow the pattern data/year/month/day/{article_names}.txt list_all_txt_files = list(glob.glob(os.path.join(data_dir, "thaigov-v2-corpus-master", "data", "*", "*", "*", "*.txt"))) all_data = [] counter = 0 for i in list_all_txt_files: d = self._read_file(i) all_data.append({"id": counter, "src": d["context"], "tgt": d["title"], "url": d["url"]}) counter += 1 self._write_jsonl(data_dir + "/train.jsonl", all_data) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # Whatever you put in gen_kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.jsonl"), "split": "train", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" if self.config.schema == "source": i = 0 with jsonlines.open(filepath) as f: for each_data in f.iter(): ex = { "id": each_data["id"], "src": each_data["src"], "tgt": each_data["tgt"], "url": each_data["url"], } yield i, ex i += 1 elif self.config.schema == "seacrowd_t2t": i = 0 with jsonlines.open(filepath) as f: for each_data in f.iter(): ex = {"id": each_data["id"], "text_1": each_data["src"], "text_2": each_data["tgt"], "text_1_name": "input_document", "text_2_name": "output_summary"} yield i, ex i += 1 def _read_file(self, path): text = {"title": "", "context": "", "url": ""} page_view_line = 0 with open(path, "r", encoding="utf-8-sig") as f: for n, line in enumerate(f): line = line.strip() if n == 0: # title line text["title"] = line.strip() else: if line: if re.match(r"^[\d,]+$", line): page_view_line = n continue if line == "พิมพ์" or page_view_line and page_view_line < n: # skip 'print' continue if re.match(r"^ที่มา : http", line): text["url"] = line.strip().split(" ")[-1] else: text["context"] += line.strip().replace("\xa0", "") + "\n" return text def _write_jsonl(self, filepath, values): with jsonlines.open(filepath, "w") as writer: for line in values: writer.write(line)