|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This dataset contains audio recordings and phonetic transcriptions of word utterances for various low-resource SEA languages. |
|
Each language has a directory of text and audio files, with the latter forming one data subset. |
|
The dataset is prepared from the online UCLA phonetic dataset, which contains 7000 utterances across 100 low-resource languages, phonetically aligned using various automatic approaches, and manually fixed for misalignments. |
|
""" |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{li2021multilingual, |
|
title={Multilingual phonetic dataset for low resource speech recognition}, |
|
author={Li, Xinjian and Mortensen, David R and Metze, Florian and Black, Alan W}, |
|
booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, |
|
pages={6958--6962}, |
|
year={2021}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ucla_phonetic" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains audio recordings and phonetic transcriptions of word utterances for various low-resource SEA languages. |
|
Each language has a directory of text and audio files, with the latter forming one data subset. |
|
The dataset is prepared from the online UCLA phonetic dataset, which contains 7000 utterances across 100 low-resource languages, phonetically aligned using various automatic approaches, and manually fixed for misalignments. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/xinjli/ucla-phonetic-corpus" |
|
|
|
_LANGUAGES = ["ace", "brv", "hil", "hni", "ilo", "khm", "mak", "mya", "pam"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_DATA_URL = "https://github.com/xinjli/ucla-phonetic-corpus/releases/download/v1.0/data.tar.gz" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def seacrowd_config_constructor(lang, schema, version): |
|
if lang not in _LANGUAGES: |
|
raise ValueError(f"Invalid lang {lang}") |
|
|
|
if schema not in ["source", "seacrowd_sptext"]: |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
return SEACrowdConfig( |
|
name=f"ucla_phonetic_{lang}_{schema}", |
|
version=datasets.Version(version), |
|
description=f"UCLA Phonetic {schema} for {lang}", |
|
schema=schema, |
|
subset_id=f"{lang}_{schema}", |
|
) |
|
|
|
|
|
class UCLAPhoneticDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset contains audio recordings and phonetic transcriptions of word utterances for various low-resource SEA languages.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name="ucla_phonetic_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="UCLA Phonetic source for ace", |
|
schema="source", |
|
subset_id="ace_source", |
|
), |
|
SEACrowdConfig( |
|
name="ucla_phonetic_seacrowd_sptext", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="UCLA Phonetic seacrowd+sptext for ace", |
|
schema="seacrowd_sptext", |
|
subset_id="ace_seacrowd_sptext", |
|
), |
|
] |
|
+ [seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in _LANGUAGES] |
|
+ [seacrowd_config_constructor(lang, "seacrowd_sptext", _SEACROWD_VERSION) for lang in _LANGUAGES] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "ucla_phonetic_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000)}) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
lang, schema = self.config.subset_id.split("_", maxsplit=1) |
|
data_dir = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "data", lang, "text.txt"), |
|
"audiopath": Path(os.path.join(data_dir, "data", lang, "audio")), |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, audiopath: Path) -> Tuple[int, Dict]: |
|
|
|
audiofiles = {} |
|
for audiofile in audiopath.iterdir(): |
|
audio_idx = os.path.basename(audiofile).split(".")[0] |
|
audiofiles[audio_idx] = audiofile |
|
|
|
if self.config.schema == "source": |
|
for line_idx, line in enumerate(open(filepath)): |
|
audio_idx, text = line.strip().split(maxsplit=1) |
|
yield line_idx, {"id": line_idx, "text": text, "audio": str(audiofiles[audio_idx])} |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
for line_idx, line in enumerate(open(filepath)): |
|
audio_idx, text = line.strip().split(maxsplit=1) |
|
yield line_idx, {"id": line_idx, "path": str(audiofiles[audio_idx]), "audio": str(audiofiles[audio_idx]), "text": text, "speaker_id": None, "metadata": {"speaker_age": None, "speaker_gender": None}} |
|
|