File size: 5,937 Bytes
33e7c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{fujita2021empirical,
title={An Empirical Investigation of Online News Classification on an Open-Domain, Large-Scale and High-Quality Dataset in Vietnamese},
author={Fujita, H and Perez-Meana, H},
booktitle={New Trends in Intelligent Software Methodologies, Tools and Techniques: Proceedings of the 20th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques (SoMeT_21)},
volume={337},
pages={367},
year={2021},
organization={IOS Press}
}
"""
_DATASETNAME = "uit_vion"
_DESCRIPTION = """\
UIT-ViON (Vietnamese Online Newspaper) is a dataset collected from well-known online newspapers in Vietnamese.
The UIT-ViON is an open-domain, large-scale, and high-quality dataset consisting of 260,000 textual data
points annotated with 13 different categories for evaluating Vietnamese short text classification.
The dataset is split into training, validation, and test sets, each containing 208000, 26000,
and 26000 pieces of text, respectively.
"""
_HOMEPAGE = "https://github.com/kh4nh12/UIT-ViON-Dataset"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/kh4nh12/UIT-ViON-Dataset/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class UitVion(datasets.GeneratorBasedBuilder):
"""UIT-ViON (Vietnamese Online Newspaper) is a dataset collected from well-known online newspapers in Vietnamese."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
LABEL_CLASSES = [i for i in range(13)]
SEACROWD_SCHEMA_NAME = "text"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"title": datasets.Value("string"),
"link": datasets.Value("string"),
"label": datasets.ClassLabel(names=self.LABEL_CLASSES),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text_features(self.LABEL_CLASSES)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
file_dir = os.path.join("UIT-ViON-Dataset-main", "data.zip")
data_dir = os.path.join(data_dir, file_dir)
data_dir = dl_manager.download_and_extract(data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "UIT-ViON_train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "UIT-ViON_test.csv"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "UIT-ViON_dev.csv"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
data = pd.read_csv(filepath)
if self.config.schema == "source":
for i, row in data.iterrows():
yield i, {
"title": str(row["title"]),
"link": str(row["link"]),
"label": row["label"],
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
for i, row in data.iterrows():
yield i, {
"id": str(i),
"text": str(row["title"]),
"label": int(row["label"]),
}
|