|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset. |
|
It is an aspect-based sentiment analysis dataset. |
|
It consists of 11,122 human-annotated comments for mobile e-commerce. |
|
""" |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@InProceedings{10.1007/978-3-030-82147-0_53, |
|
author="Luc Phan, Luong |
|
and Huynh Pham, Phuc |
|
and Thi-Thanh Nguyen, Kim |
|
and Khai Huynh, Sieu |
|
and Thi Nguyen, Tham |
|
and Thanh Nguyen, Luan |
|
and Van Huynh, Tin |
|
and Van Nguyen, Kiet", |
|
editor="Qiu, Han |
|
and Zhang, Cheng |
|
and Fei, Zongming |
|
and Qiu, Meikang |
|
and Kung, Sun-Yuan", |
|
title="SA2SL: From Aspect-Based Sentiment Analysis to Social Listening System for Business Intelligence", |
|
booktitle="Knowledge Science, Engineering and Management ", |
|
year="2021", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="647--658", |
|
isbn="978-3-030-82147-0" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "uit_visfd" |
|
|
|
_DESCRIPTION = """ |
|
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset. |
|
It is an aspect-based sentiment analysis dataset. |
|
It consists of 11,122 human-annotated comments for mobile e-commerce. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/LuongPhan/UIT-ViSFD" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = {_DATASETNAME: "https://github.com/LuongPhan/UIT-ViSFD/raw/main/UIT-ViSFD.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UITViSFDDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Crawled textual feedback from customers about smartphones on a large e-commerce website in Vietnam. |
|
The label of the dataset is ten aspects and three polarities. |
|
Please read the guidelines in the paper for more information. |
|
We randomly divide the dataset into three sets: |
|
- Train: 7,786. |
|
- Dev: 1,112. |
|
- Test: 2,224. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text_multi", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_text_multi", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
_LABELS = [ |
|
"BATTERY#Positive", |
|
"BATTERY#Neutral", |
|
"BATTERY#Negative", |
|
"GENERAL#Positive", |
|
"GENERAL#Neutral", |
|
"GENERAL#Negative", |
|
"CAMERA#Positive", |
|
"CAMERA#Neutral", |
|
"CAMERA#Negative", |
|
"FEATURES#Positive", |
|
"FEATURES#Neutral", |
|
"FEATURES#Negative", |
|
"PRICE#Positive", |
|
"PRICE#Neutral", |
|
"PRICE#Negative", |
|
"SER&ACC#Positive", |
|
"SER&ACC#Neutral", |
|
"SER&ACC#Negative", |
|
"PERFORMANCE#Positive", |
|
"PERFORMANCE#Neutral", |
|
"PERFORMANCE#Negative", |
|
"SCREEN#Positive", |
|
"SCREEN#Neutral", |
|
"SCREEN#Negative", |
|
"DESIGN#Positive", |
|
"DESIGN#Neutral", |
|
"DESIGN#Negative", |
|
"STORAGE#Positive", |
|
"STORAGE#Neutral", |
|
"STORAGE#Negative", |
|
"OTHERS", |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{"index": datasets.Value("int64"), "comment": datasets.Value("string"), "n_star": datasets.Value("int64"), "date_time": datasets.Value("string"), "label": datasets.Sequence(feature=datasets.ClassLabel(names=self._LABELS))} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features(self._LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "Train.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "Test.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "Dev.csv"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_csv(filepath, index_col=None) |
|
|
|
def transform_label(label_string): |
|
label_string = label_string.strip("{}") |
|
label_pairs = label_string.split(";") |
|
label_array = [] |
|
for pair in label_pairs: |
|
pair = pair.strip("{}") |
|
if pair: |
|
label_array.append(pair) |
|
return label_array |
|
|
|
df["label"] = df["label"].apply(transform_label) |
|
|
|
for index, row in df.iterrows(): |
|
|
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
|
|
example = { |
|
"id": str(row["index"]), |
|
"text": str(row["comment"]), |
|
"labels": row["label"], |
|
} |
|
|
|
yield index, example |
|
|