holylovenia
commited on
Commit
•
b3b9b01
1
Parent(s):
3e396ae
Upload uit_visfd.py with huggingface_hub
Browse files- uit_visfd.py +227 -0
uit_visfd.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset.
|
18 |
+
It is an aspect-based sentiment analysis dataset.
|
19 |
+
It consists of 11,122 human-annotated comments for mobile e-commerce.
|
20 |
+
"""
|
21 |
+
import os
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Dict, List, Tuple
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
import pandas as pd
|
27 |
+
|
28 |
+
from seacrowd.utils import schemas
|
29 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
30 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
31 |
+
|
32 |
+
_CITATION = """\
|
33 |
+
@InProceedings{10.1007/978-3-030-82147-0_53,
|
34 |
+
author="Luc Phan, Luong
|
35 |
+
and Huynh Pham, Phuc
|
36 |
+
and Thi-Thanh Nguyen, Kim
|
37 |
+
and Khai Huynh, Sieu
|
38 |
+
and Thi Nguyen, Tham
|
39 |
+
and Thanh Nguyen, Luan
|
40 |
+
and Van Huynh, Tin
|
41 |
+
and Van Nguyen, Kiet",
|
42 |
+
editor="Qiu, Han
|
43 |
+
and Zhang, Cheng
|
44 |
+
and Fei, Zongming
|
45 |
+
and Qiu, Meikang
|
46 |
+
and Kung, Sun-Yuan",
|
47 |
+
title="SA2SL: From Aspect-Based Sentiment Analysis to Social Listening System for Business Intelligence",
|
48 |
+
booktitle="Knowledge Science, Engineering and Management ",
|
49 |
+
year="2021",
|
50 |
+
publisher="Springer International Publishing",
|
51 |
+
address="Cham",
|
52 |
+
pages="647--658",
|
53 |
+
isbn="978-3-030-82147-0"
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
_DATASETNAME = "uit_visfd"
|
58 |
+
|
59 |
+
_DESCRIPTION = """
|
60 |
+
UIT-ViSFD is the Vietnamese Smartphone Feedback Dataset.
|
61 |
+
It is an aspect-based sentiment analysis dataset.
|
62 |
+
It consists of 11,122 human-annotated comments for mobile e-commerce.
|
63 |
+
"""
|
64 |
+
|
65 |
+
_HOMEPAGE = "https://github.com/LuongPhan/UIT-ViSFD"
|
66 |
+
|
67 |
+
_LANGUAGES = ["vie"]
|
68 |
+
|
69 |
+
_LICENSE = Licenses.UNKNOWN.value
|
70 |
+
|
71 |
+
_LOCAL = False
|
72 |
+
|
73 |
+
_URLS = {_DATASETNAME: "https://github.com/LuongPhan/UIT-ViSFD/raw/main/UIT-ViSFD.zip"}
|
74 |
+
|
75 |
+
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
|
76 |
+
|
77 |
+
_SOURCE_VERSION = "1.0.0"
|
78 |
+
|
79 |
+
_SEACROWD_VERSION = "2024.06.20"
|
80 |
+
|
81 |
+
|
82 |
+
class UITViSFDDataset(datasets.GeneratorBasedBuilder):
|
83 |
+
"""
|
84 |
+
Crawled textual feedback from customers about smartphones on a large e-commerce website in Vietnam.
|
85 |
+
The label of the dataset is ten aspects and three polarities.
|
86 |
+
Please read the guidelines in the paper for more information.
|
87 |
+
We randomly divide the dataset into three sets:
|
88 |
+
- Train: 7,786.
|
89 |
+
- Dev: 1,112.
|
90 |
+
- Test: 2,224.
|
91 |
+
"""
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
94 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
SEACrowdConfig(
|
98 |
+
name=f"{_DATASETNAME}_source",
|
99 |
+
version=SOURCE_VERSION,
|
100 |
+
description=f"{_DATASETNAME} source schema",
|
101 |
+
schema="source",
|
102 |
+
subset_id=f"{_DATASETNAME}",
|
103 |
+
),
|
104 |
+
SEACrowdConfig(
|
105 |
+
name=f"{_DATASETNAME}_seacrowd_text_multi",
|
106 |
+
version=SEACROWD_VERSION,
|
107 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
108 |
+
schema="seacrowd_text_multi",
|
109 |
+
subset_id=f"{_DATASETNAME}",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
114 |
+
|
115 |
+
_LABELS = [
|
116 |
+
"BATTERY#Positive",
|
117 |
+
"BATTERY#Neutral",
|
118 |
+
"BATTERY#Negative",
|
119 |
+
"GENERAL#Positive",
|
120 |
+
"GENERAL#Neutral",
|
121 |
+
"GENERAL#Negative",
|
122 |
+
"CAMERA#Positive",
|
123 |
+
"CAMERA#Neutral",
|
124 |
+
"CAMERA#Negative",
|
125 |
+
"FEATURES#Positive",
|
126 |
+
"FEATURES#Neutral",
|
127 |
+
"FEATURES#Negative",
|
128 |
+
"PRICE#Positive",
|
129 |
+
"PRICE#Neutral",
|
130 |
+
"PRICE#Negative",
|
131 |
+
"SER&ACC#Positive",
|
132 |
+
"SER&ACC#Neutral",
|
133 |
+
"SER&ACC#Negative",
|
134 |
+
"PERFORMANCE#Positive",
|
135 |
+
"PERFORMANCE#Neutral",
|
136 |
+
"PERFORMANCE#Negative",
|
137 |
+
"SCREEN#Positive",
|
138 |
+
"SCREEN#Neutral",
|
139 |
+
"SCREEN#Negative",
|
140 |
+
"DESIGN#Positive",
|
141 |
+
"DESIGN#Neutral",
|
142 |
+
"DESIGN#Negative",
|
143 |
+
"STORAGE#Positive",
|
144 |
+
"STORAGE#Neutral",
|
145 |
+
"STORAGE#Negative",
|
146 |
+
"OTHERS",
|
147 |
+
]
|
148 |
+
|
149 |
+
def _info(self) -> datasets.DatasetInfo:
|
150 |
+
|
151 |
+
if self.config.schema == "source":
|
152 |
+
|
153 |
+
features = datasets.Features(
|
154 |
+
{"index": datasets.Value("int64"), "comment": datasets.Value("string"), "n_star": datasets.Value("int64"), "date_time": datasets.Value("string"), "label": datasets.Sequence(feature=datasets.ClassLabel(names=self._LABELS))}
|
155 |
+
)
|
156 |
+
|
157 |
+
elif self.config.schema == "seacrowd_text_multi":
|
158 |
+
features = schemas.text_multi_features(self._LABELS)
|
159 |
+
|
160 |
+
return datasets.DatasetInfo(
|
161 |
+
description=_DESCRIPTION,
|
162 |
+
features=features,
|
163 |
+
homepage=_HOMEPAGE,
|
164 |
+
license=_LICENSE,
|
165 |
+
citation=_CITATION,
|
166 |
+
)
|
167 |
+
|
168 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
169 |
+
"""Returns SplitGenerators."""
|
170 |
+
|
171 |
+
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME])
|
172 |
+
|
173 |
+
return [
|
174 |
+
datasets.SplitGenerator(
|
175 |
+
name=datasets.Split.TRAIN,
|
176 |
+
gen_kwargs={
|
177 |
+
"filepath": os.path.join(data_dir, "Train.csv"),
|
178 |
+
"split": "train",
|
179 |
+
},
|
180 |
+
),
|
181 |
+
datasets.SplitGenerator(
|
182 |
+
name=datasets.Split.TEST,
|
183 |
+
gen_kwargs={
|
184 |
+
"filepath": os.path.join(data_dir, "Test.csv"),
|
185 |
+
"split": "test",
|
186 |
+
},
|
187 |
+
),
|
188 |
+
datasets.SplitGenerator(
|
189 |
+
name=datasets.Split.VALIDATION,
|
190 |
+
gen_kwargs={
|
191 |
+
"filepath": os.path.join(data_dir, "Dev.csv"),
|
192 |
+
"split": "dev",
|
193 |
+
},
|
194 |
+
),
|
195 |
+
]
|
196 |
+
|
197 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
198 |
+
"""Yields examples as (key, example) tuples."""
|
199 |
+
|
200 |
+
df = pd.read_csv(filepath, index_col=None)
|
201 |
+
|
202 |
+
def transform_label(label_string):
|
203 |
+
label_string = label_string.strip("{}")
|
204 |
+
label_pairs = label_string.split(";")
|
205 |
+
label_array = []
|
206 |
+
for pair in label_pairs:
|
207 |
+
pair = pair.strip("{}")
|
208 |
+
if pair:
|
209 |
+
label_array.append(pair)
|
210 |
+
return label_array
|
211 |
+
|
212 |
+
df["label"] = df["label"].apply(transform_label)
|
213 |
+
|
214 |
+
for index, row in df.iterrows():
|
215 |
+
|
216 |
+
if self.config.schema == "source":
|
217 |
+
example = row.to_dict()
|
218 |
+
|
219 |
+
elif self.config.schema == "seacrowd_text_multi":
|
220 |
+
|
221 |
+
example = {
|
222 |
+
"id": str(row["index"]),
|
223 |
+
"text": str(row["comment"]),
|
224 |
+
"labels": row["label"],
|
225 |
+
}
|
226 |
+
|
227 |
+
yield index, example
|