holylovenia
commited on
Commit
•
bfe256a
1
Parent(s):
ee10963
Upload unisent.py with huggingface_hub
Browse files- unisent.py +292 -0
unisent.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Dict, List, Tuple
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
from seacrowd.utils import schemas
|
10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{asgari2020unisent,
|
15 |
+
title={UniSent: Universal Adaptable Sentiment Lexica for 1000+ Languages},
|
16 |
+
author={Asgari, Ehsaneddin and Braune, Fabienne and Ringlstetter, Christoph and Mofrad, Mohammad RK},
|
17 |
+
booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC-2020)},
|
18 |
+
year={2020},
|
19 |
+
organization={European Language Resources Association (ELRA)}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
_DATASETNAME = "unisent"
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
UniSent is a universal sentiment lexica for 1000+ languages.
|
25 |
+
To build UniSent, the authors use a massively parallel Bible
|
26 |
+
corpus to project sentiment information from English to other
|
27 |
+
languages for sentiment analysis on Twitter data. 173 of 1404
|
28 |
+
languages are spoken in Southeast Asia
|
29 |
+
"""
|
30 |
+
_URLS = "https://raw.githubusercontent.com/ehsanasgari/UniSent/master/unisent_lexica_v1/{}_unisent_lexicon.txt"
|
31 |
+
_HOMEPAGE = "https://github.com/ehsanasgari/UniSent"
|
32 |
+
_LANGUAGES = [
|
33 |
+
'aaz',
|
34 |
+
'abx',
|
35 |
+
'ace',
|
36 |
+
'acn',
|
37 |
+
'agn',
|
38 |
+
'agt',
|
39 |
+
'ahk',
|
40 |
+
'akb',
|
41 |
+
'alj',
|
42 |
+
'alp',
|
43 |
+
'amk',
|
44 |
+
'aoz',
|
45 |
+
'atb',
|
46 |
+
'atd',
|
47 |
+
'att',
|
48 |
+
'ban',
|
49 |
+
'bbc',
|
50 |
+
'bcl',
|
51 |
+
'bgr',
|
52 |
+
'bgs',
|
53 |
+
'bgz',
|
54 |
+
'bhp',
|
55 |
+
'bkd',
|
56 |
+
'bku',
|
57 |
+
'blw',
|
58 |
+
'blz',
|
59 |
+
'bnj',
|
60 |
+
'bpr',
|
61 |
+
'bps',
|
62 |
+
'bru',
|
63 |
+
'btd',
|
64 |
+
'bth',
|
65 |
+
'bto',
|
66 |
+
'bts',
|
67 |
+
'btx',
|
68 |
+
'bug',
|
69 |
+
'bvz',
|
70 |
+
'bzi',
|
71 |
+
'cbk',
|
72 |
+
'ceb',
|
73 |
+
'cfm',
|
74 |
+
'cgc',
|
75 |
+
'clu',
|
76 |
+
'cmo',
|
77 |
+
'cnh',
|
78 |
+
'cnw',
|
79 |
+
'csy',
|
80 |
+
'ctd',
|
81 |
+
'czt',
|
82 |
+
'dgc',
|
83 |
+
'dtp',
|
84 |
+
'due',
|
85 |
+
'duo',
|
86 |
+
'ebk',
|
87 |
+
'fil',
|
88 |
+
'gbi',
|
89 |
+
'gdg',
|
90 |
+
'gor',
|
91 |
+
'heg',
|
92 |
+
'hil',
|
93 |
+
'hlt',
|
94 |
+
'hnj',
|
95 |
+
'hnn',
|
96 |
+
'hvn',
|
97 |
+
'iba',
|
98 |
+
'ifa',
|
99 |
+
'ifb',
|
100 |
+
'ifk',
|
101 |
+
'ifu',
|
102 |
+
'ify',
|
103 |
+
'ilo',
|
104 |
+
'ind',
|
105 |
+
'iry',
|
106 |
+
'isd',
|
107 |
+
'itv',
|
108 |
+
'ium',
|
109 |
+
'ivb',
|
110 |
+
'ivv',
|
111 |
+
'jav',
|
112 |
+
'jra',
|
113 |
+
'kac',
|
114 |
+
'khm',
|
115 |
+
'kix',
|
116 |
+
'kje',
|
117 |
+
'kmk',
|
118 |
+
'kne',
|
119 |
+
'kqe',
|
120 |
+
'krj',
|
121 |
+
'ksc',
|
122 |
+
'ksw',
|
123 |
+
'kxm',
|
124 |
+
'lao',
|
125 |
+
'lbk',
|
126 |
+
'lew',
|
127 |
+
'lex',
|
128 |
+
'lhi',
|
129 |
+
'lhu',
|
130 |
+
'ljp',
|
131 |
+
'lsi',
|
132 |
+
'lus',
|
133 |
+
'mad',
|
134 |
+
'mak',
|
135 |
+
'mbb',
|
136 |
+
'mbd',
|
137 |
+
'mbf',
|
138 |
+
'mbi',
|
139 |
+
'mbs',
|
140 |
+
'mbt',
|
141 |
+
'mej',
|
142 |
+
'mkn',
|
143 |
+
'mmn',
|
144 |
+
'mnb',
|
145 |
+
'mnx',
|
146 |
+
'mog',
|
147 |
+
'mqj',
|
148 |
+
'mqy',
|
149 |
+
'mrw',
|
150 |
+
'msb',
|
151 |
+
'msk',
|
152 |
+
'msm',
|
153 |
+
'mta',
|
154 |
+
'mtg',
|
155 |
+
'mtj',
|
156 |
+
'mvp',
|
157 |
+
'mwq',
|
158 |
+
'mwv',
|
159 |
+
'mya',
|
160 |
+
'nbe',
|
161 |
+
'nfa',
|
162 |
+
'nia',
|
163 |
+
'nij',
|
164 |
+
'nlc',
|
165 |
+
'npy',
|
166 |
+
'obo',
|
167 |
+
'pag',
|
168 |
+
'pam',
|
169 |
+
'plw',
|
170 |
+
'pmf',
|
171 |
+
'pne',
|
172 |
+
'ppk',
|
173 |
+
'prf',
|
174 |
+
'prk',
|
175 |
+
'pse',
|
176 |
+
'ptu',
|
177 |
+
'pww',
|
178 |
+
'sas',
|
179 |
+
'sbl',
|
180 |
+
'sda',
|
181 |
+
'sgb',
|
182 |
+
'smk',
|
183 |
+
'sml',
|
184 |
+
'sun',
|
185 |
+
'sxn',
|
186 |
+
'szb',
|
187 |
+
'tbl',
|
188 |
+
'tby',
|
189 |
+
'tcz',
|
190 |
+
'tdt',
|
191 |
+
'tgl',
|
192 |
+
'tha',
|
193 |
+
'tih',
|
194 |
+
'tlb',
|
195 |
+
'twu',
|
196 |
+
'urk',
|
197 |
+
'vie',
|
198 |
+
'war',
|
199 |
+
'whk',
|
200 |
+
'wrs',
|
201 |
+
'xbr',
|
202 |
+
'yli',
|
203 |
+
'yva',
|
204 |
+
'zom',
|
205 |
+
'zyp']
|
206 |
+
|
207 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value # cc-by-nc-nd-4.0
|
208 |
+
_LOCAL = False
|
209 |
+
|
210 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
211 |
+
|
212 |
+
_SOURCE_VERSION = "1.0.0"
|
213 |
+
_SEACROWD_VERSION = "2024.06.20"
|
214 |
+
|
215 |
+
|
216 |
+
class UniSentDataset(datasets.GeneratorBasedBuilder):
|
217 |
+
LABELS = ["NEGATIVE", "POSITIVE"]
|
218 |
+
|
219 |
+
BUILDER_CONFIGS = [
|
220 |
+
SEACrowdConfig(
|
221 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
222 |
+
version=datasets.Version(_SOURCE_VERSION),
|
223 |
+
description=_DESCRIPTION, schema="source",
|
224 |
+
subset_id=f"{_DATASETNAME}_{lang}"
|
225 |
+
)
|
226 |
+
for lang in _LANGUAGES
|
227 |
+
] + [
|
228 |
+
SEACrowdConfig(
|
229 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_text",
|
230 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
231 |
+
description=_DESCRIPTION,
|
232 |
+
schema="seacrowd_text",
|
233 |
+
subset_id=f"{_DATASETNAME}_{lang}"
|
234 |
+
)
|
235 |
+
for lang in _LANGUAGES
|
236 |
+
]
|
237 |
+
|
238 |
+
def _info(self) -> datasets.DatasetInfo:
|
239 |
+
|
240 |
+
if self.config.schema == "source":
|
241 |
+
features = datasets.Features(
|
242 |
+
{
|
243 |
+
"word": datasets.Value("string"),
|
244 |
+
"lexicon": datasets.Value("string"),
|
245 |
+
}
|
246 |
+
)
|
247 |
+
elif self.config.schema == "seacrowd_text":
|
248 |
+
features = schemas.text_features(label_names=self.LABELS)
|
249 |
+
else:
|
250 |
+
raise Exception(f"Unsupported schema: {self.config.schema}")
|
251 |
+
|
252 |
+
return datasets.DatasetInfo(
|
253 |
+
description=_DESCRIPTION,
|
254 |
+
features=features,
|
255 |
+
homepage=_HOMEPAGE,
|
256 |
+
license=_LICENSE,
|
257 |
+
citation=_CITATION,
|
258 |
+
)
|
259 |
+
|
260 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
261 |
+
lang = self.config.subset_id.split("_")[-1]
|
262 |
+
url = _URLS.format(lang)
|
263 |
+
data_dir = dl_manager.download_and_extract(url)
|
264 |
+
return [
|
265 |
+
datasets.SplitGenerator(
|
266 |
+
name=datasets.Split.TRAIN,
|
267 |
+
gen_kwargs={
|
268 |
+
"filepath": data_dir,
|
269 |
+
},
|
270 |
+
),
|
271 |
+
]
|
272 |
+
|
273 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
274 |
+
with open(filepath, "r", encoding="utf-8") as filein:
|
275 |
+
data_instances = [inst.strip("\n").split("\t") for inst in filein.readlines()]
|
276 |
+
|
277 |
+
for di_idx, data_instance in enumerate(data_instances):
|
278 |
+
word, lexicon = data_instance
|
279 |
+
if self.config.schema == "source":
|
280 |
+
yield di_idx, {"word": word, "lexicon": lexicon}
|
281 |
+
elif self.config.schema == "seacrowd_text":
|
282 |
+
yield di_idx, {"id": di_idx, "text": word, "label": self.LABELS[self._clip_label(int(lexicon))]}
|
283 |
+
else:
|
284 |
+
raise Exception(f"Unsupported schema: {self.config.schema}")
|
285 |
+
|
286 |
+
@staticmethod
|
287 |
+
def _clip_label(label: int) -> int:
|
288 |
+
"""
|
289 |
+
Original labels are -1, +1.
|
290 |
+
Clip the label to 0 or 1 to get right index.
|
291 |
+
"""
|
292 |
+
return 0 if int(label) < 0 else 1
|