|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Parallel and monolingual data for training machine translation systems translating English texts into Vietnamese, with a focus on news domain. |
|
The data was crawled from high-quality bilingual or multilingual websites of news and one-speaker educational talks on various topics, mostly technology, entertainment, and design (hereby referred to as TED-like talks). |
|
The dataset also includes noisy movie subtitles from the OpenSubtitle dataset. |
|
""" |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{vlsp2020-mt, |
|
title = {{Goals, Challenges and Findings of the VLSP 2020 English-Vietnamese News Translation Shared Task}}, |
|
author = {Thanh-Le Ha and Van-Khanh Tran and Kim-Anh Nguyen}, |
|
booktitle = {{Proceedings of the 7th International Workshop on Vietnamese Language and Speech Processing - VLSP 2020}}, |
|
year = {2020} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vlsp2020_mt_envi" |
|
|
|
_DESCRIPTION = """\ |
|
Parallel and monolingual data for training machine translation systems translating English texts into Vietnamese, with a focus on news domain. |
|
The data was crawled from high-quality bilingual or multilingual websites of news and one-speaker educational talks on various topics, mostly technology, entertainment, and design (hereby referred to as TED-like talks). |
|
The dataset also includes noisy movie subtitles from the OpenSubtitle dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/thanhleha-kit/EnViCorpora" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = "https://github.com/thanhleha-kit/EnViCorpora/archive/refs/heads/master.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class Vlsp2020MtEnviDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Parallel and monolingual data for training machine translation systems translating English texts into Vietnamese, with a focus on news domain. |
|
The data was crawled from high-quality bilingual or multilingual websites of news and one-speaker educational talks on various topics, mostly technology, entertainment, and design (hereby referred to as TED-like talks). |
|
The dataset also includes noisy movie subtitles from the OpenSubtitle dataset. |
|
""" |
|
|
|
|
|
subsets = { |
|
|
|
"EVBCorpus": [ |
|
("bitext", datasets.Split.TRAIN), |
|
], |
|
"VLSP20-official": [ |
|
("offi_test", datasets.Split.TEST), |
|
], |
|
"basic": [ |
|
("data", datasets.Split.TRAIN), |
|
], |
|
"indomain-news": [ |
|
("train", datasets.Split.TRAIN), |
|
("dev", datasets.Split.VALIDATION), |
|
("tst", datasets.Split.TEST), |
|
], |
|
"iwslt15": [ |
|
("train", datasets.Split.TRAIN), |
|
("dev", datasets.Split.VALIDATION), |
|
("test", datasets.Split.TEST), |
|
], |
|
"iwslt15-official": [ |
|
("IWSLT15.official_test", datasets.Split.TEST), |
|
], |
|
"ted-like": [ |
|
("data", datasets.Split.TRAIN), |
|
], |
|
"wiki-alt": [ |
|
("data", datasets.Split.TRAIN), |
|
], |
|
} |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{subset} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in list(subsets.keys()) |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME}_{subset} SEACrowd schema", |
|
schema="seacrowd_t2t", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in list(subsets.keys()) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_VLSP20-official_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text_en": datasets.Value("string"), |
|
"text_vi": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
subset_id = self.config.subset_id.split("_")[-1] |
|
|
|
filenames = self.subsets[subset_id] |
|
if "iwslt15" in subset_id: |
|
subset_id = "iwslt15" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=splitname, |
|
gen_kwargs={ |
|
"filepath": { |
|
"en": os.path.join(data_dir, "EnViCorpora-master", subset_id, f"{filename}.en"), |
|
"vi": os.path.join(data_dir, "EnViCorpora-master", subset_id, f"{filename}.vi"), |
|
}, |
|
}, |
|
) |
|
for filename, splitname in filenames |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath["en"], "r") as f: |
|
en = f.readlines() |
|
with open(filepath["vi"], "r") as f: |
|
vi = f.readlines() |
|
|
|
if self.config.schema == "source": |
|
for i, (en_text, vi_text) in enumerate(zip(en, vi)): |
|
yield i, { |
|
"id": str(i), |
|
"text_en": en_text.strip(), |
|
"text_vi": vi_text.strip(), |
|
} |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
for i, (en_text, vi_text) in enumerate(zip(en, vi)): |
|
yield i, { |
|
"id": str(i), |
|
"text_1": en_text.strip(), |
|
"text_2": vi_text.strip(), |
|
"text_1_name": "en", |
|
"text_2_name": "vi", |
|
} |
|
|