holylovenia
commited on
Commit
•
a7243b5
1
Parent(s):
56ff802
Upload wili_2018.py with huggingface_hub
Browse files- wili_2018.py +359 -0
wili_2018.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
from seacrowd.utils import schemas
|
6 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
7 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
8 |
+
|
9 |
+
_CITATION = """
|
10 |
+
@article{thoma2018wili,
|
11 |
+
title={The WiLI benchmark dataset for written language identification},
|
12 |
+
author={Thoma, Martin},
|
13 |
+
journal={arXiv preprint arXiv:1801.07779},
|
14 |
+
year={2018}
|
15 |
+
}
|
16 |
+
"""
|
17 |
+
|
18 |
+
_DATASETNAME = "wili_2018"
|
19 |
+
|
20 |
+
_DESCRIPTION = """
|
21 |
+
WiLI-2018 is a Wikipedia language identification benchmark dataset. It contains 235000 paragraphs from 235 languages.
|
22 |
+
The dataset is balanced, and a train-test split is provided.
|
23 |
+
"""
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://zenodo.org/records/841984"
|
26 |
+
|
27 |
+
_LANGUAGES = ["nrm", "jav", "min", "lao", "mya", "pag", "ind", "cbk", "tet", "tha", "ceb", "tgl", "bjn", "bcl", "vie"]
|
28 |
+
|
29 |
+
_LICENSE = Licenses.ODBL.value
|
30 |
+
|
31 |
+
_LOCAL = False
|
32 |
+
|
33 |
+
_URLS = {
|
34 |
+
_DATASETNAME: {"train": "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u", "test": "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"},
|
35 |
+
}
|
36 |
+
|
37 |
+
_SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION]
|
38 |
+
|
39 |
+
_SOURCE_VERSION = "1.0.0"
|
40 |
+
|
41 |
+
_SEACROWD_VERSION = "2024.06.20"
|
42 |
+
|
43 |
+
|
44 |
+
_CLASSES = [
|
45 |
+
"cdo",
|
46 |
+
"glk",
|
47 |
+
"jam",
|
48 |
+
"lug",
|
49 |
+
"san",
|
50 |
+
"rue",
|
51 |
+
"wol",
|
52 |
+
"new",
|
53 |
+
"mwl",
|
54 |
+
"bre",
|
55 |
+
"ara",
|
56 |
+
"hye",
|
57 |
+
"xmf",
|
58 |
+
"ext",
|
59 |
+
"cor",
|
60 |
+
"yor",
|
61 |
+
"div",
|
62 |
+
"asm",
|
63 |
+
"lat",
|
64 |
+
"cym",
|
65 |
+
"hif",
|
66 |
+
"ace",
|
67 |
+
"kbd",
|
68 |
+
"tgk",
|
69 |
+
"rus",
|
70 |
+
"nso",
|
71 |
+
"mya",
|
72 |
+
"msa",
|
73 |
+
"ava",
|
74 |
+
"cbk",
|
75 |
+
"urd",
|
76 |
+
"deu",
|
77 |
+
"swa",
|
78 |
+
"pus",
|
79 |
+
"bxr",
|
80 |
+
"udm",
|
81 |
+
"csb",
|
82 |
+
"yid",
|
83 |
+
"vro",
|
84 |
+
"por",
|
85 |
+
"pdc",
|
86 |
+
"eng",
|
87 |
+
"tha",
|
88 |
+
"hat",
|
89 |
+
"lmo",
|
90 |
+
"pag",
|
91 |
+
"jav",
|
92 |
+
"chv",
|
93 |
+
"nan",
|
94 |
+
"sco",
|
95 |
+
"kat",
|
96 |
+
"bho",
|
97 |
+
"bos",
|
98 |
+
"kok",
|
99 |
+
"oss",
|
100 |
+
"mri",
|
101 |
+
"fry",
|
102 |
+
"cat",
|
103 |
+
"azb",
|
104 |
+
"kin",
|
105 |
+
"hin",
|
106 |
+
"sna",
|
107 |
+
"dan",
|
108 |
+
"egl",
|
109 |
+
"mkd",
|
110 |
+
"ron",
|
111 |
+
"bul",
|
112 |
+
"hrv",
|
113 |
+
"som",
|
114 |
+
"pam",
|
115 |
+
"nav",
|
116 |
+
"ksh",
|
117 |
+
"nci",
|
118 |
+
"khm",
|
119 |
+
"sgs",
|
120 |
+
"srn",
|
121 |
+
"bar",
|
122 |
+
"cos",
|
123 |
+
"ckb",
|
124 |
+
"pfl",
|
125 |
+
"arz",
|
126 |
+
"roa-tara",
|
127 |
+
"fra",
|
128 |
+
"mai",
|
129 |
+
"zh-yue",
|
130 |
+
"guj",
|
131 |
+
"fin",
|
132 |
+
"kir",
|
133 |
+
"vol",
|
134 |
+
"hau",
|
135 |
+
"afr",
|
136 |
+
"uig",
|
137 |
+
"lao",
|
138 |
+
"swe",
|
139 |
+
"slv",
|
140 |
+
"kor",
|
141 |
+
"szl",
|
142 |
+
"srp",
|
143 |
+
"dty",
|
144 |
+
"nrm",
|
145 |
+
"dsb",
|
146 |
+
"ind",
|
147 |
+
"wln",
|
148 |
+
"pnb",
|
149 |
+
"ukr",
|
150 |
+
"bpy",
|
151 |
+
"vie",
|
152 |
+
"tur",
|
153 |
+
"aym",
|
154 |
+
"lit",
|
155 |
+
"zea",
|
156 |
+
"pol",
|
157 |
+
"est",
|
158 |
+
"scn",
|
159 |
+
"vls",
|
160 |
+
"stq",
|
161 |
+
"gag",
|
162 |
+
"grn",
|
163 |
+
"kaz",
|
164 |
+
"ben",
|
165 |
+
"pcd",
|
166 |
+
"bjn",
|
167 |
+
"krc",
|
168 |
+
"amh",
|
169 |
+
"diq",
|
170 |
+
"ltz",
|
171 |
+
"ita",
|
172 |
+
"kab",
|
173 |
+
"bel",
|
174 |
+
"ang",
|
175 |
+
"mhr",
|
176 |
+
"che",
|
177 |
+
"koi",
|
178 |
+
"glv",
|
179 |
+
"ido",
|
180 |
+
"fao",
|
181 |
+
"bak",
|
182 |
+
"isl",
|
183 |
+
"bcl",
|
184 |
+
"tet",
|
185 |
+
"jpn",
|
186 |
+
"kur",
|
187 |
+
"map-bms",
|
188 |
+
"tyv",
|
189 |
+
"olo",
|
190 |
+
"arg",
|
191 |
+
"ori",
|
192 |
+
"lim",
|
193 |
+
"tel",
|
194 |
+
"lin",
|
195 |
+
"roh",
|
196 |
+
"sqi",
|
197 |
+
"xho",
|
198 |
+
"mlg",
|
199 |
+
"fas",
|
200 |
+
"hbs",
|
201 |
+
"tam",
|
202 |
+
"aze",
|
203 |
+
"lad",
|
204 |
+
"nob",
|
205 |
+
"sin",
|
206 |
+
"gla",
|
207 |
+
"nap",
|
208 |
+
"snd",
|
209 |
+
"ast",
|
210 |
+
"mal",
|
211 |
+
"mdf",
|
212 |
+
"tsn",
|
213 |
+
"nds",
|
214 |
+
"tgl",
|
215 |
+
"nno",
|
216 |
+
"sun",
|
217 |
+
"lzh",
|
218 |
+
"jbo",
|
219 |
+
"crh",
|
220 |
+
"pap",
|
221 |
+
"oci",
|
222 |
+
"hak",
|
223 |
+
"uzb",
|
224 |
+
"zho",
|
225 |
+
"hsb",
|
226 |
+
"sme",
|
227 |
+
"mlt",
|
228 |
+
"vep",
|
229 |
+
"lez",
|
230 |
+
"nld",
|
231 |
+
"nds-nl",
|
232 |
+
"mrj",
|
233 |
+
"spa",
|
234 |
+
"ceb",
|
235 |
+
"ina",
|
236 |
+
"heb",
|
237 |
+
"hun",
|
238 |
+
"que",
|
239 |
+
"kaa",
|
240 |
+
"mar",
|
241 |
+
"vec",
|
242 |
+
"frp",
|
243 |
+
"ell",
|
244 |
+
"sah",
|
245 |
+
"eus",
|
246 |
+
"ces",
|
247 |
+
"slk",
|
248 |
+
"chr",
|
249 |
+
"lij",
|
250 |
+
"nep",
|
251 |
+
"srd",
|
252 |
+
"ilo",
|
253 |
+
"be-tarask",
|
254 |
+
"bod",
|
255 |
+
"orm",
|
256 |
+
"war",
|
257 |
+
"glg",
|
258 |
+
"mon",
|
259 |
+
"gle",
|
260 |
+
"min",
|
261 |
+
"ibo",
|
262 |
+
"ile",
|
263 |
+
"epo",
|
264 |
+
"lav",
|
265 |
+
"lrc",
|
266 |
+
"als",
|
267 |
+
"mzn",
|
268 |
+
"rup",
|
269 |
+
"fur",
|
270 |
+
"tat",
|
271 |
+
"myv",
|
272 |
+
"pan",
|
273 |
+
"ton",
|
274 |
+
"kom",
|
275 |
+
"wuu",
|
276 |
+
"tcy",
|
277 |
+
"tuk",
|
278 |
+
"kan",
|
279 |
+
"ltg",
|
280 |
+
]
|
281 |
+
|
282 |
+
|
283 |
+
class Wili2018Dataset(datasets.GeneratorBasedBuilder):
|
284 |
+
"""A benchmark dataset for language identification and contains 235000 paragraphs of 235 languages."""
|
285 |
+
|
286 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
287 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
288 |
+
|
289 |
+
BUILDER_CONFIGS = [
|
290 |
+
SEACrowdConfig(
|
291 |
+
name=f"{_DATASETNAME}_source",
|
292 |
+
version=SOURCE_VERSION,
|
293 |
+
description=f"{_DATASETNAME} source schema",
|
294 |
+
schema="source",
|
295 |
+
subset_id=_DATASETNAME,
|
296 |
+
),
|
297 |
+
SEACrowdConfig(
|
298 |
+
name=f"{_DATASETNAME}_seacrowd_text",
|
299 |
+
version=SEACROWD_VERSION,
|
300 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
301 |
+
schema="seacrowd_text",
|
302 |
+
subset_id=_DATASETNAME,
|
303 |
+
),
|
304 |
+
]
|
305 |
+
|
306 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
307 |
+
|
308 |
+
def _info(self) -> datasets.DatasetInfo:
|
309 |
+
if self.config.schema == "source":
|
310 |
+
features = datasets.Features(
|
311 |
+
{
|
312 |
+
"sentence": datasets.Value("string"),
|
313 |
+
"label": datasets.ClassLabel(names=_CLASSES),
|
314 |
+
}
|
315 |
+
)
|
316 |
+
|
317 |
+
elif self.config.schema == "seacrowd_text":
|
318 |
+
features = schemas.text_features(_CLASSES)
|
319 |
+
|
320 |
+
return datasets.DatasetInfo(
|
321 |
+
description=_DESCRIPTION,
|
322 |
+
features=features,
|
323 |
+
homepage=_HOMEPAGE,
|
324 |
+
license=_LICENSE,
|
325 |
+
citation=_CITATION,
|
326 |
+
)
|
327 |
+
|
328 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
|
329 |
+
"""Returns SplitGenerators."""
|
330 |
+
urls = _URLS[_DATASETNAME]
|
331 |
+
data_dir = dl_manager.download_and_extract(urls)
|
332 |
+
|
333 |
+
return [
|
334 |
+
datasets.SplitGenerator(
|
335 |
+
name=datasets.Split.TRAIN,
|
336 |
+
gen_kwargs={"filepath": data_dir, "split": "train"},
|
337 |
+
),
|
338 |
+
datasets.SplitGenerator(
|
339 |
+
name=datasets.Split.TEST,
|
340 |
+
gen_kwargs={"filepath": data_dir, "split": "test"},
|
341 |
+
),
|
342 |
+
]
|
343 |
+
|
344 |
+
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]:
|
345 |
+
if self.config.schema == "source":
|
346 |
+
with open(filepath[split], encoding="utf-8") as f:
|
347 |
+
for i, line in enumerate(f):
|
348 |
+
text, label = line.rsplit(",", 1)
|
349 |
+
text = text.strip('"')
|
350 |
+
label = int(label.strip())
|
351 |
+
yield i, {"sentence": text, "label": _CLASSES[label - 1]}
|
352 |
+
|
353 |
+
elif self.config.schema == "seacrowd_text":
|
354 |
+
with open(filepath[split], encoding="utf-8") as f:
|
355 |
+
for i, line in enumerate(f):
|
356 |
+
text, label = line.rsplit(",", 1)
|
357 |
+
text = text.strip('"')
|
358 |
+
label = int(label.strip())
|
359 |
+
yield i, {"id": str(i), "text": text, "label": _CLASSES[label - 1]}
|