File size: 5,905 Bytes
4e22ee4 57a6cb7 4e22ee4 57a6cb7 4e22ee4 57a6cb7 4e22ee4 57a6cb7 4e22ee4 57a6cb7 4e22ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.sea_datasets.x_fact.utils.x_fact_utils import \
load_x_fact_dataset
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{gupta2021xfact,
title={{X-FACT: A New Benchmark Dataset for Multilingual Fact Checking}},
author={Gupta, Ashim and Srikumar, Vivek},
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
"""
_DATASETNAME = "x_fact"
_DESCRIPTION = """\
X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims.
"""
_HOMEPAGE = "https://github.com/utahnlp/x-fact"
_LANGUAGES = [
'ara', 'aze', 'ben', 'deu', 'spa',
'fas', 'fra', 'guj', 'hin', 'ind',
'ita', 'kat', 'mar', 'nor', 'nld',
'pan', 'pol', 'por', 'ron', 'rus',
'sin', 'srp', 'sqi', 'tam', 'tur'
]
_LOCAL = False
_LICENSE = "MIT"
_URLS = {
"train": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/train.all.tsv",
"validation": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/dev.all.tsv",
"test": {
"in_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/test.all.tsv",
"out_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/ood.tsv",
},
}
_SUPPORTED_TASKS = [Tasks.FACT_CHECKING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class XFact(datasets.GeneratorBasedBuilder):
"""X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="x_fact_source",
version=SOURCE_VERSION,
description="x_fact source schema",
schema="source",
subset_id="x_fact",
),
]
DEFAULT_CONFIG_NAME = "x_fact_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"language": datasets.Value("string"),
"site": datasets.Value("string"),
"evidence_1": datasets.Value("string"),
"evidence_2": datasets.Value("string"),
"evidence_3": datasets.Value("string"),
"evidence_4": datasets.Value("string"),
"evidence_5": datasets.Value("string"),
"link_1": datasets.Value("string"),
"link_2": datasets.Value("string"),
"link_3": datasets.Value("string"),
"link_4": datasets.Value("string"),
"link_5": datasets.Value("string"),
"claimDate": datasets.Value("string"),
"reviewDate": datasets.Value("string"),
"claimant": datasets.Value("string"),
"claim": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": _URLS["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": _URLS["validation"],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.splits.NamedSplit("TEST_IN_DOMAIN"),
gen_kwargs={
"filepath": _URLS["test"]["in_domain"],
"split": "test_in_domain",
},
),
datasets.SplitGenerator(
name=datasets.splits.NamedSplit("TEST_OUT_DOMAIN"),
gen_kwargs={
"filepath": _URLS["test"]["out_domain"],
"split": "test_out_domain",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
df = load_x_fact_dataset(filepath)
if self.config.schema == "source":
for row in df.itertuples():
entry = {
"language": row.language,
"site": row.site,
"evidence_1": row.evidence_1,
"evidence_2": row.evidence_2,
"evidence_3": row.evidence_3,
"evidence_4": row.evidence_4,
"evidence_5": row.evidence_5,
"link_1": row.link_1,
"link_2": row.link_2,
"link_3": row.link_3,
"link_4": row.link_4,
"link_5": row.link_5,
"claimDate": row.claimDate,
"reviewDate": row.reviewDate,
"claimant": row.claimant,
"claim": row.claim,
"label": row.label,
}
yield row.index, entry
|