Datasets:

ArXiv:
License:
holylovenia commited on
Commit
e91656b
1 Parent(s): 913e312

Upload xquad.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. xquad.py +124 -0
xquad.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from typing import Dict, List, Tuple
4
+
5
+ import datasets
6
+
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import Licenses, Tasks
10
+
11
+ _CITATION = """\
12
+ @article{Artetxe:etal:2019,
13
+ author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
14
+ title = {On the cross-lingual transferability of monolingual representations},
15
+ journal = {CoRR},
16
+ volume = {abs/1910.11856},
17
+ year = {2019},
18
+ archivePrefix = {arXiv},
19
+ eprint = {1910.11856}
20
+ }
21
+ """
22
+
23
+ _DATASETNAME = "xquad"
24
+
25
+ _DESCRIPTION = """\
26
+ XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance.
27
+ The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together (Rajpurkar et al., 2016)
28
+ with their professional translations into ten languages in their original implementation: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi and two in this dataloader: Vietnamese & Thai
29
+ """
30
+
31
+ _HOMEPAGE = "https://github.com/google-deepmind/xquad"
32
+
33
+ _LICENSE = Licenses.CC_BY_SA_4_0.value
34
+
35
+ _LOCAL = False
36
+ _LANGUAGES = ["tha", "vie"]
37
+
38
+ _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
39
+
40
+ _SOURCE_VERSION = "1.0.0"
41
+ _SEACROWD_VERSION = "2024.06.20"
42
+
43
+
44
+ class XQuADDataset(datasets.GeneratorBasedBuilder):
45
+ """
46
+ XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance.
47
+ The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together
48
+ with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi.
49
+ """
50
+
51
+ subsets = ["xquad.vi", "xquad.th"]
52
+
53
+ BUILDER_CONFIGS = [
54
+ SEACrowdConfig(
55
+ name="{sub}_source".format(sub=subset),
56
+ version=datasets.Version(_SOURCE_VERSION),
57
+ description="{sub} source schema".format(sub=subset),
58
+ schema="source",
59
+ subset_id="{sub}".format(sub=subset),
60
+ )
61
+ for subset in subsets
62
+ ] + [
63
+ SEACrowdConfig(
64
+ name="{sub}_seacrowd_qa".format(sub=subset),
65
+ version=datasets.Version(_SEACROWD_VERSION),
66
+ description="{sub} SEACrowd schema".format(sub=subset),
67
+ schema="seacrowd_qa",
68
+ subset_id="{sub}".format(sub=subset),
69
+ )
70
+ for subset in subsets
71
+ ]
72
+
73
+ DEFAULT_CONFIG_NAME = "xquad.vi_source"
74
+
75
+ def _info(self) -> datasets.DatasetInfo:
76
+ if self.config.schema == "source":
77
+ features = datasets.Features(
78
+ {"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")}
79
+ )
80
+ elif self.config.schema == "seacrowd_qa":
81
+ features = schemas.qa_features
82
+
83
+ return datasets.DatasetInfo(
84
+ description=_DESCRIPTION,
85
+ features=features,
86
+ homepage=_HOMEPAGE,
87
+ license=_LICENSE,
88
+ citation=_CITATION,
89
+ )
90
+
91
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
92
+ return [
93
+ datasets.SplitGenerator(
94
+ name=datasets.Split.TRAIN
95
+ )
96
+ ]
97
+
98
+ def _generate_examples(self) -> Tuple[int, Dict]:
99
+ name_split = self.config.name.split("_")
100
+ subset_name = name_split[0]
101
+ dataset = datasets.load_dataset(_DATASETNAME, subset_name)
102
+
103
+ # Validation is the only subset name available for this dataset
104
+ for data in dataset['validation']:
105
+ if self.config.schema == "source":
106
+ yield data['id'], {
107
+ "context": data['context'],
108
+ "question": data['question'],
109
+ "answers": {"answer_start": str(data['answers']['answer_start'][0]), "text": data['answers']['text'][0]},
110
+ "id": data['id'],
111
+ }
112
+
113
+ elif self.config.schema == "seacrowd_qa":
114
+ yield data['id'], {
115
+ "question_id": data['id'],
116
+ "context": data['context'],
117
+ "question": data['question'],
118
+ "answer": {"answer_start": data['answers']['answer_start'][0], "text": data['answers']['text'][0]},
119
+ "id": data['id'],
120
+ "choices": [],
121
+ "type": "",
122
+ "document_id": data['id'],
123
+ "meta": {},
124
+ }