import json from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } """ _DATASETNAME = "xquad" _DESCRIPTION = """\ XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together (Rajpurkar et al., 2016) with their professional translations into ten languages in their original implementation: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi and two in this dataloader: Vietnamese & Thai """ _HOMEPAGE = "https://github.com/google-deepmind/xquad" _LICENSE = Licenses.CC_BY_SA_4_0.value _LOCAL = False _LANGUAGES = ["tha", "vie"] _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class XQuADDataset(datasets.GeneratorBasedBuilder): """ XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 together with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. """ subsets = ["xquad.vi", "xquad.th"] BUILDER_CONFIGS = [ SEACrowdConfig( name="{sub}_source".format(sub=subset), version=datasets.Version(_SOURCE_VERSION), description="{sub} source schema".format(sub=subset), schema="source", subset_id="{sub}".format(sub=subset), ) for subset in subsets ] + [ SEACrowdConfig( name="{sub}_seacrowd_qa".format(sub=subset), version=datasets.Version(_SEACROWD_VERSION), description="{sub} SEACrowd schema".format(sub=subset), schema="seacrowd_qa", subset_id="{sub}".format(sub=subset), ) for subset in subsets ] DEFAULT_CONFIG_NAME = "xquad.vi_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( {"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")} ) elif self.config.schema == "seacrowd_qa": features = schemas.qa_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN ) ] def _generate_examples(self) -> Tuple[int, Dict]: name_split = self.config.name.split("_") subset_name = name_split[0] dataset = datasets.load_dataset(_DATASETNAME, subset_name) # Validation is the only subset name available for this dataset for data in dataset['validation']: if self.config.schema == "source": yield data['id'], { "context": data['context'], "question": data['question'], "answers": {"answer_start": str(data['answers']['answer_start'][0]), "text": data['answers']['text'][0]}, "id": data['id'], } elif self.config.schema == "seacrowd_qa": yield data['id'], { "question_id": data['id'], "context": data['context'], "question": data['question'], "answer": {"answer_start": data['answers']['answer_start'][0], "text": data['answers']['text'][0]}, "id": data['id'], "choices": [], "type": "", "document_id": data['id'], "meta": {}, }