ahnafsamin commited on
Commit
c85c785
1 Parent(s): 83efd93

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md CHANGED
@@ -1,3 +1,147 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ task_categories:
4
+ - automatic-speech-recognition
5
+ language:
6
+ - bn
7
+ tags:
8
+ - Evaluation Benchmark
9
+ - Robustness
10
+ - ASR
11
+ - Bengali
12
+ - Spontaneous Speech
13
+ size_categories:
14
+ - 1K<n<10K
15
  ---
16
+
17
+ # Dataset Card for BanSpeech
18
+
19
+ ## Table of Contents
20
+ - [Dataset Card for SUBAK.KO](#dataset-card-for-BanSpeech)
21
+ - [Table of Contents](#table-of-contents)
22
+ - [Dataset Description](#dataset-description)
23
+ - [Dataset Summary](#dataset-summary)
24
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
25
+ - [Languages](#languages)
26
+ - [Dataset Structure](#dataset-structure)
27
+ - [Data Instances](#data-instances)
28
+ - [Data Fields](#data-fields)
29
+ - [Data Splits](#data-splits)
30
+ - [Dataset Creation](#dataset-creation)
31
+ - [Curation Rationale](#curation-rationale)
32
+ - [Source Data](#source-data)
33
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
34
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
35
+ - [Annotations](#annotations)
36
+ - [Annotation process](#annotation-process)
37
+ - [Who are the annotators?](#who-are-the-annotators)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+ - [Contributions](#contributions)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Developed By** Dept. of CSE, SUST, Bangladesh
52
+ - **Paper:** [BanSpeech: A Multi-domain Bangla Speech Recognition Benchmark Toward Robust Performance in Challenging Conditions](https://www.sciencedirect.com/science/article/abs/pii/S0167639321001370)
53
+ - **Point of Contact:** [Ahnaf Mozib Samin, Dept. of CSE, SUST](mailto:asamin9796@gmail.com)
54
+
55
+ ### Dataset Summary
56
+
57
+ BanSpeech is a publicly available human-annotated Bangladeshi standard Bangla multi-domain automatic speech recognition (ASR) benchmark.
58
+ This benchmark contains approximately 6.52 hours of human-annotated broadcast speech, totaling 8085 utterances, across 13 distinct domains and
59
+ is primarily designed for ASR performance evaluation in challenging conditions e.g. spontaneous, domain-shifting, multi-talker, code-switching.
60
+ In addition, BanSpeech covers dialectal domains from 7 regions of Bangladesh, however, this part is weakly labeled.
61
+ The dialectal domain can be used for dialect recognition task. The [corresponding paper](https://www.sciencedirect.com/science/article/abs/pii/S0167639321001370) reports
62
+ detailed information about the development of BanSpeech and also the performance of state-of-the-art fully supervised, self-supervised and weakly supervised models'
63
+ performance on BanSpeech.
64
+
65
+ BanSpeech is developed by the researchers from the **Department of Computer Science and Engineering (CSE)** at **Shahjalal University of Science and Technology (SUST),
66
+ Bangladesh**.
67
+
68
+
69
+ ### Example Usage
70
+ To load the full BanSpeech, use the following code:
71
+
72
+ ```python
73
+ from datasets import load_dataset
74
+
75
+ dataset = load_dataset("SUST-CSE-Speech/banspeech")
76
+ ```
77
+
78
+ To load a specific domain of the BanSpeech, define the domain in the split parameter and set the streaming mode as True in the following way:
79
+
80
+ ```python
81
+ from datasets import load_dataset
82
+
83
+ dataset = load_dataset("SUST-CSE-Speech/banspeech", split="sports", streaming=True)
84
+ ```
85
+ More documentation on streaming can be found [from this link.](https://huggingface.co/docs/datasets/stream#split-dataset)
86
+
87
+ Alternatively, you can manually download the zipped BanSpeech folder from [this HuggingFace directory.](https://huggingface.co/datasets/ahnafsamin/SUBAK.KO/tree/main/Data)
88
+ The zipped folder contains speeches from the 13 general domains as well as the 7 dialectal domains.
89
+ The csv files corresponding to the domains can be found in the same directory.
90
+
91
+ ### Supported Tasks and Leaderboards
92
+
93
+ This benchmark is designed for the automatic speech recognition performance evaluation. The associated paper provides the baseline results on SUBAK.KO corpus.
94
+
95
+ ### Languages
96
+
97
+ Bangladeshi standard Bangla
98
+
99
+ ## Dataset Structure
100
+
101
+ ### Data Instances
102
+
103
+ A typical data point comprises the path to the audio file and its transcription.
104
+
105
+ ```
106
+ {
107
+ 'audio': {'path': '/home/username/Study/wav2vec2/bangla_broadcast_speech_corpus/banspeech/television_news/news_shomoy_11_d_222.wav',
108
+ 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
109
+ 'sampling_rate': 16000},
110
+ 'transcript': 'এবং রাস্তা হয়েছে',
111
+ 'path': '/television_news/news_shomoy_11_d_222.wav'
112
+ }
113
+ ```
114
+
115
+ ### Data Fields
116
+
117
+ - audio: A dictionary containing the path to the original audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
118
+
119
+ - transcription: The orthographic transcription
120
+
121
+ - file_path: The relative path to the audio file
122
+
123
+
124
+ ## Additional Information
125
+
126
+ ### Licensing Information
127
+
128
+ [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en)
129
+
130
+ ### Citation Information
131
+ Please cite the following paper if you use the corpus.
132
+
133
+ ```
134
+ @article{kibria2022bangladeshi,
135
+ title={Bangladeshi Bangla speech corpus for automatic speech recognition research},
136
+ author={Kibria, Shafkat and Samin, Ahnaf Mozib and Kobir, M Humayon and Rahman, M Shahidur and Selim, M Reza and Iqbal, M Zafar},
137
+ journal={Speech Communication},
138
+ volume={136},
139
+ pages={84--97},
140
+ year={2022},
141
+ publisher={Elsevier}
142
+ }
143
+ ```
144
+
145
+ ### Contributions
146
+
147
+ Thanks to [Ahnaf Mozib Samin](https://huggingface.co/ahnafsamin) for adding this dataset.