Datasets:
Tasks:
Question Answering
Sub-tasks:
open-domain-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
File size: 4,062 Bytes
3430efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: commonsenseqa
pretty_name: CommonsenseQA
dataset_info:
features:
- name: id
dtype: string
- name: question
dtype: string
- name: question_concept
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: train
num_bytes: 2207794
num_examples: 9741
- name: validation
num_bytes: 273848
num_examples: 1221
- name: test
num_bytes: 257842
num_examples: 1140
download_size: 1558570
dataset_size: 2739484
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
## Usage
```python
from datasets import load_dataset
dataset=load_dataset(
"Sadanto3933/commonsense_qa",
split="train",
)
# ...
```
# Dataset Card for "commonsense_qa"
## Dataset Description
- **Homepage:** https://www.tau-nlp.org/commonsenseqa
- **Repository:** https://github.com/jonathanherzig/commonsenseqa
- **Paper:** https://arxiv.org/abs/1811.00937
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 4.68 MB
- **Size of the generated dataset:** 2.18 MB
- **Total amount of disk used:** 6.86 MB
### Dataset Summary
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
to predict the correct answers.
The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation
split, and "Question token split", see paper for details.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The dataset is in English (`en`).
## Dataset Structure
### Data Instances
An example of 'train' looks as follows:
```json
{'id': '075e483d21c29a511267ef62bedc0461',
'question': 'The sanctions against the school were a punishing blow, and they seemed to what the efforts the school had made to change?',
'question_concept': 'punishing',
'choices': {'label': ['A', 'B', 'C', 'D', 'E'],
'text': ['ignore', 'enforce', 'authoritarian', 'yell at', 'avoid']},
'answerKey': 'A'}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `id` (`str`): Unique ID.
- `question`: a `string` feature.
- `question_concept` (`str`): ConceptNet concept associated to the question.
- `choices`: a dictionary feature containing:
- `label`: a `string` feature.
- `text`: a `string` feature.
- `answerKey`: a `string` feature.
## Dataset Creation
### Licensing Information
The dataset is licensed under the MIT License.
See: https://github.com/jonathanherzig/commonsenseqa/issues/5
### Citation Information
```
@inproceedings{talmor-etal-2019-commonsenseqa,
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
author = "Talmor, Alon and
Herzig, Jonathan and
Lourie, Nicholas and
Berant, Jonathan",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1421",
doi = "10.18653/v1/N19-1421",
pages = "4149--4158",
archivePrefix = "arXiv",
eprint = "1811.00937",
primaryClass = "cs",
}
```
|