Datasets:
File size: 6,474 Bytes
5dcc941 f52cc1f 5dcc941 d9f675e 5dcc941 0adbcc0 5dcc941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
pretty_name: Tarteel AI - EveryAyah Dataset
dataset_info:
features:
- name: audio
dtype: audio
- name: duration
dtype: float64
- name: text
dtype: string
- name: reciter
dtype: string
splits:
- name: train
num_bytes: 262627688145.3
num_examples: 187785
- name: test
num_bytes: 25156009734.72
num_examples: 23473
- name: validation
num_bytes: 23426886730.218
num_examples: 23474
download_size: 117190597305
dataset_size: 311210584610.23804
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- ar
license:
- mit
multilinguality:
- monolingual
paperswithcode_id: tarteel-everyayah
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
train-eval-index:
- config: clean
task: automatic-speech-recognition
task_id: speech_recognition
splits:
train_split: train
eval_split: test
validation_split: validation
col_mapping:
audio: audio
text: text
reciter: text
metrics:
- type: wer
name: WER
- type: cer
name: CER
---
﷽
# Dataset Card for Tarteel AI's EveryAyah Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Tarteel AI](https://www.tarteel.ai/)
- **Repository:** [Needs More Information]
- **Point of Contact:** [Mohamed Saad Ibn Seddik](mailto:ms.ibnseddik@tarteel.ai)
### Dataset Summary
This dataset is a collection of Quranic verses and their transcriptions, with diacritization, by different reciters.
### How to download
```
!pip install -q datasets
from datasets import load_dataset
dataset =load_dataset("Salama1429/tarteel-ai-everyayah-Quran", verification_mode="no_checks")
```
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
The audio is in Arabic.
## Dataset Structure
### Data Instances
A typical data point comprises the audio file `audio`, and its transcription called `text`.
The `duration` is in seconds, and the author is `reciter`.
An example from the dataset is:
```
{
'audio': {
'path': None,
'array': array([ 0. , 0. , 0. , ..., -0.00057983,
-0.00085449, -0.00061035]),
'sampling_rate': 16000
},
'duration': 6.478375,
'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
'reciter': 'abdulsamad'
}
```
### Length:
Training:
Total duration: 2985111.2642479446 seconds
Total duration: 49751.85440413241 minutes
Total duration: 829.1975734022068 hours
Validation:
Total duration: 372720.43139099434 seconds
Total duration: 6212.007189849905 minutes
Total duration: 103.5334531641651 hours
Test:
Total duration: 375509.96909399604 seconds
Total duration: 6258.499484899934 minutes
Total duration: 104.30832474833224 hours
### Data Fields
- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
- text: The transcription of the audio file.
- duration: The duration of the audio file.
- reciter: The reciter of the verses.
### Data Splits
| | Train | Test | Validation |
| ----- | ----- | ---- | ---------- |
| dataset | 187785 | 23473 | 23474 |
### reciters
- reciters_count: 36
- reciters: {'abdul_basit',
'abdullah_basfar',
'abdullah_matroud',
'abdulsamad',
'abdurrahmaan_as-sudais',
'abu_bakr_ash-shaatree',
'ahmed_ibn_ali_al_ajamy',
'ahmed_neana',
'akram_alalaqimy',
'alafasy',
'ali_hajjaj_alsuesy',
'aziz_alili',
'fares_abbad',
'ghamadi',
'hani_rifai',
'husary',
'karim_mansoori',
'khaalid_abdullaah_al-qahtaanee',
'khalefa_al_tunaiji',
'maher_al_muaiqly',
'mahmoud_ali_al_banna',
'menshawi',
'minshawi',
'mohammad_al_tablaway',
'muhammad_abdulkareem',
'muhammad_ayyoub',
'muhammad_jibreel',
'muhsin_al_qasim',
'mustafa_ismail',
'nasser_alqatami',
'parhizgar',
'sahl_yassin',
'salaah_abdulrahman_bukhatir',
'saood_ash-shuraym',
'yaser_salamah',
'yasser_ad-dussary'}
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
### Licensing Information
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
### Citation Information
```
```
### Contributions
This dataset was created by:
|