Commit
·
4979160
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/0.1.0/dummy_data.zip +3 -0
- wikisql.py +161 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "A large crowd-sourced dataset for developing natural language interfaces for relational databases\n", "citation": "@article{zhongSeq2SQL2017,\n author = {Victor Zhong and\n Caiming Xiong and\n Richard Socher},\n title = {Seq2SQL: Generating Structured Queries from Natural Language using\n Reinforcement Learning},\n journal = {CoRR},\n volume = {abs/1709.00103},\n year = {2017}\n}\n", "homepage": "https://github.com/salesforce/WikiSQL", "license": "", "features": {"phase": {"dtype": "int32", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "page_title": {"dtype": "string", "id": null, "_type": "Value"}, "page_id": {"dtype": "string", "id": null, "_type": "Value"}, "types": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "section_title": {"dtype": "string", "id": null, "_type": "Value"}, "caption": {"dtype": "string", "id": null, "_type": "Value"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}, "sql": {"human_readable": {"dtype": "string", "id": null, "_type": "Value"}, "sel": {"dtype": "int32", "id": null, "_type": "Value"}, "agg": {"dtype": "int32", "id": null, "_type": "Value"}, "conds": {"feature": {"column_index": {"dtype": "int32", "id": null, "_type": "Value"}, "operator_index": {"dtype": "int32", "id": null, "_type": "Value"}, "condition": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "supervised_keys": null, "builder_name": "wiki_sql", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 32234761, "num_examples": 15878, "dataset_name": "wiki_sql"}, "validation": {"name": "validation", "num_bytes": 15159314, "num_examples": 8421, "dataset_name": "wiki_sql"}, "train": {"name": "train", "num_bytes": 107345917, "num_examples": 56355, "dataset_name": "wiki_sql"}}, "download_checksums": {"https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2": {"num_bytes": 26164664, "checksum": "755c728ab188e364575705c8641f3fafd86fb089cb8b08e8c03f01832aae0881"}}, "download_size": 26164664, "dataset_size": 154739992, "size_in_bytes": 180904656}}
|
dummy/0.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d01b228943cc6f1a5e76b73ee8d493c69692377f946fbf30fb984610a1610644
|
3 |
+
size 2426
|
wikisql.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A large crowd-sourced dataset for developing natural language interfaces for relational databases"""
|
2 |
+
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@article{zhongSeq2SQL2017,
|
13 |
+
author = {Victor Zhong and
|
14 |
+
Caiming Xiong and
|
15 |
+
Richard Socher},
|
16 |
+
title = {Seq2SQL: Generating Structured Queries from Natural Language using
|
17 |
+
Reinforcement Learning},
|
18 |
+
journal = {CoRR},
|
19 |
+
volume = {abs/1709.00103},
|
20 |
+
year = {2017}
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
A large crowd-sourced dataset for developing natural language interfaces for relational databases
|
26 |
+
"""
|
27 |
+
|
28 |
+
_DATA_URL = "https://github.com/salesforce/WikiSQL/raw/master/data.tar.bz2"
|
29 |
+
|
30 |
+
_AGG_OPS = ["", "MAX", "MIN", "COUNT", "SUM", "AVG"]
|
31 |
+
_COND_OPS = ["=", ">", "<", "OP"]
|
32 |
+
|
33 |
+
|
34 |
+
class WikiSQL(datasets.GeneratorBasedBuilder):
|
35 |
+
"""WikiSQL: A large crowd-sourced dataset for developing natural language interfaces for relational databases"""
|
36 |
+
|
37 |
+
VERSION = datasets.Version("0.1.0")
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
return datasets.DatasetInfo(
|
41 |
+
description=_DESCRIPTION,
|
42 |
+
features=datasets.Features(
|
43 |
+
{
|
44 |
+
"phase": datasets.Value("int32"),
|
45 |
+
"question": datasets.Value("string"),
|
46 |
+
"table": {
|
47 |
+
"header": datasets.features.Sequence(datasets.Value("string")),
|
48 |
+
"page_title": datasets.Value("string"),
|
49 |
+
"page_id": datasets.Value("string"),
|
50 |
+
"types": datasets.features.Sequence(datasets.Value("string")),
|
51 |
+
"id": datasets.Value("string"),
|
52 |
+
"section_title": datasets.Value("string"),
|
53 |
+
"caption": datasets.Value("string"),
|
54 |
+
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
|
55 |
+
"name": datasets.Value("string"),
|
56 |
+
},
|
57 |
+
"sql": {
|
58 |
+
"human_readable": datasets.Value("string"),
|
59 |
+
"sel": datasets.Value("int32"),
|
60 |
+
"agg": datasets.Value("int32"),
|
61 |
+
"conds": datasets.features.Sequence(
|
62 |
+
{
|
63 |
+
"column_index": datasets.Value("int32"),
|
64 |
+
"operator_index": datasets.Value("int32"),
|
65 |
+
"condition": datasets.Value("string"),
|
66 |
+
}
|
67 |
+
),
|
68 |
+
},
|
69 |
+
}
|
70 |
+
),
|
71 |
+
# If there's a common (input, target) tuple from the features,
|
72 |
+
# specify them here. They'll be used if as_supervised=True in
|
73 |
+
# builder.as_dataset.
|
74 |
+
supervised_keys=None,
|
75 |
+
# Homepage of the dataset for documentation
|
76 |
+
homepage="https://github.com/salesforce/WikiSQL",
|
77 |
+
citation=_CITATION,
|
78 |
+
)
|
79 |
+
|
80 |
+
def _split_generators(self, dl_manager):
|
81 |
+
"""Returns SplitGenerators."""
|
82 |
+
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
83 |
+
dl_dir = os.path.join(dl_dir, "data")
|
84 |
+
|
85 |
+
return [
|
86 |
+
datasets.SplitGenerator(
|
87 |
+
name=datasets.Split.TEST,
|
88 |
+
gen_kwargs={
|
89 |
+
"main_filepath": os.path.join(dl_dir, "test.jsonl"),
|
90 |
+
"tables_filepath": os.path.join(dl_dir, "test.tables.jsonl"),
|
91 |
+
},
|
92 |
+
),
|
93 |
+
datasets.SplitGenerator(
|
94 |
+
name=datasets.Split.VALIDATION,
|
95 |
+
gen_kwargs={
|
96 |
+
"main_filepath": os.path.join(dl_dir, "dev.jsonl"),
|
97 |
+
"tables_filepath": os.path.join(dl_dir, "dev.tables.jsonl"),
|
98 |
+
},
|
99 |
+
),
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={
|
103 |
+
"main_filepath": os.path.join(dl_dir, "train.jsonl"),
|
104 |
+
"tables_filepath": os.path.join(dl_dir, "train.tables.jsonl"),
|
105 |
+
},
|
106 |
+
),
|
107 |
+
]
|
108 |
+
|
109 |
+
def _convert_to_human_readable(self, sel, agg, columns, conditions):
|
110 |
+
"""Make SQL query string. Based on https://github.com/salesforce/WikiSQL/blob/c2ed4f9b22db1cc2721805d53e6e76e07e2ccbdc/lib/query.py#L10"""
|
111 |
+
|
112 |
+
rep = "SELECT {agg} {sel} FROM table".format(
|
113 |
+
agg=_AGG_OPS[agg], sel=columns[sel] if columns is not None else "col{}".format(sel)
|
114 |
+
)
|
115 |
+
|
116 |
+
if conditions:
|
117 |
+
rep += " WHERE " + " AND ".join(["{} {} {}".format(columns[i], _COND_OPS[o], v) for i, o, v in conditions])
|
118 |
+
return " ".join(rep.split())
|
119 |
+
|
120 |
+
def _generate_examples(self, main_filepath, tables_filepath):
|
121 |
+
"""Yields examples."""
|
122 |
+
|
123 |
+
# Build dictionary to table_ids:tables
|
124 |
+
with open(tables_filepath, encoding="utf-8") as f:
|
125 |
+
tables = [json.loads(line) for line in f]
|
126 |
+
id_to_tables = {x["id"]: x for x in tables}
|
127 |
+
|
128 |
+
with open(main_filepath, encoding="utf-8") as f:
|
129 |
+
for idx, line in enumerate(f):
|
130 |
+
row = json.loads(line)
|
131 |
+
row["table"] = id_to_tables[row["table_id"]]
|
132 |
+
del row["table_id"]
|
133 |
+
|
134 |
+
# Handle missing data
|
135 |
+
row["table"]["page_title"] = row["table"].get("page_title", "")
|
136 |
+
row["table"]["section_title"] = row["table"].get("section_title", "")
|
137 |
+
row["table"]["caption"] = row["table"].get("caption", "")
|
138 |
+
row["table"]["name"] = row["table"].get("name", "")
|
139 |
+
row["table"]["page_id"] = str(row["table"].get("page_id", ""))
|
140 |
+
|
141 |
+
# Fix row types
|
142 |
+
row["table"]["rows"] = [[str(e) for e in r] for r in row["table"]["rows"]]
|
143 |
+
|
144 |
+
# Get human-readable version
|
145 |
+
row["sql"]["human_readable"] = self._convert_to_human_readable(
|
146 |
+
row["sql"]["sel"],
|
147 |
+
row["sql"]["agg"],
|
148 |
+
row["table"]["header"],
|
149 |
+
row["sql"]["conds"],
|
150 |
+
)
|
151 |
+
|
152 |
+
# Restructure sql->conds
|
153 |
+
# - wikiSQL provides a tuple [column_index, operator_index, condition]
|
154 |
+
# as 'condition' can have 2 types (float or str) we convert to dict
|
155 |
+
for i in range(len(row["sql"]["conds"])):
|
156 |
+
row["sql"]["conds"][i] = {
|
157 |
+
"column_index": row["sql"]["conds"][i][0],
|
158 |
+
"operator_index": row["sql"]["conds"][i][1],
|
159 |
+
"condition": str(row["sql"]["conds"][i][2]),
|
160 |
+
}
|
161 |
+
yield idx, row
|