import json import re from collections import defaultdict import torch import torch.nn as nn import torch.optim as optim def flatten_json_data(json_file_path): with open(json_file_path, 'r', encoding='utf-8') as f: data = json.load(f) flattened_data = [] for dataset in data: for section in ["conversation_samples", "technical_terminology"]: if section in dataset: for category, samples in dataset[section].items(): for item in samples: if "balochi" in item and "english" in item and "urdu" in item and "persian" in item: # Check if all keys are present for balochi_sentence, english_sentence, urdu_sentence, persian_sentence in zip(item['balochi'], item['english'], item['urdu'], item['persian']): flattened_data.append({ "context": item.get('context', category), "balochi": balochi_sentence, "english": english_sentence, "urdu": urdu_sentence, "persian": persian_sentence }) return flattened_data def parse_tsv_data(tsv_file_path): data = [] with open(tsv_file_path, 'r', encoding='utf-8') as f: for line in f: balochi, english = line.strip().split('\t') data.append({"balochi": balochi, "english": english}) return data def create_vocab(tokenized_sentences): vocab = defaultdict(lambda: len(vocab)) vocab[''] = 0 vocab[''] = 1 # Add unknown token for sentence in tokenized_sentences: for word in sentence: vocab[word] return dict(vocab) def tokenize_text(text): return re.findall(r"[\w']+(?:ء)?|[\u0600-\u06FF]+|[؟،۔٬؛٪٫٬]+|\S", text) class SimpleRNNTranslator(nn.Module): def __init__(self, input_size, output_size, hidden_size): super(SimpleRNNTranslator, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(input_size, hidden_size) self.rnn = nn.RNN(hidden_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): embedded = self.embedding(x) # Shape: [batch_size, seq_len, hidden_size] output, _ = self.rnn(embedded) # Shape: [batch_size, seq_len, hidden_size] output = self.fc(output) # Shape: [batch_size, seq_len, output_size] return output def train_model(flattened_data, num_epochs=10, hidden_size=256, learning_rate=0.001): # Tokenize sentences balochi_sentences = [tokenize_text(entry['balochi']) for entry in flattened_data] english_sentences = [tokenize_text(entry['english']) for entry in flattened_data] # Create vocabularies balochi_vocab = create_vocab(balochi_sentences) english_vocab = create_vocab(english_sentences) input_size = len(balochi_vocab) output_size = len(english_vocab) # Use a unified max sequence length max_seq_len = max( max(len(sentence) for sentence in balochi_sentences), max(len(sentence) for sentence in english_sentences) ) def encode_sentences(sentences, vocab, max_len): encoded = [ [vocab.get(word, vocab['']) for word in sentence] + [0] * (max_len - len(sentence)) for sentence in sentences ] return torch.LongTensor(encoded) # Encode inputs and targets with the same max_seq_len X = encode_sentences(balochi_sentences, balochi_vocab, max_seq_len) # Shape: [batch_size, max_seq_len] Y = encode_sentences(english_sentences, english_vocab, max_seq_len) # Shape: [batch_size, max_seq_len] # Initialize model, loss, and optimizer model = SimpleRNNTranslator(input_size, output_size, hidden_size) criterion = nn.CrossEntropyLoss(ignore_index=0) # Ignore padding token during loss computation optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Training loop for epoch in range(num_epochs): model.train() optimizer.zero_grad() # Forward pass outputs = model(X) # Shape: [batch_size, max_seq_len, output_size] outputs = outputs.view(-1, output_size) # Flatten outputs for loss computation # Flatten target tensor target = Y.view(-1) # Shape: [batch_size * max_seq_len] # Compute loss loss = criterion(outputs, target) # Backward pass and optimization loss.backward() optimizer.step() print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}") return model, balochi_vocab, english_vocab, max_seq_len def translate(model, balochi_sentence, balochi_vocab, english_vocab, max_balochi_len, max_output_len=20): tokenized_sentence = tokenize_text(balochi_sentence) encoded_sentence = [balochi_vocab.get(word, balochi_vocab['']) for word in tokenized_sentence] padded_sentence = encoded_sentence + [0] * (max_balochi_len - len(encoded_sentence)) input_tensor = torch.LongTensor([padded_sentence]) # Initialize decoding model.eval() with torch.no_grad(): output_tensor = model(input_tensor) # Shape: [batch_size, seq_len, output_size] predicted_indices = torch.argmax(output_tensor, dim=2)[0] # Take the first (and only) batch reverse_english_vocab = {idx: word for word, idx in english_vocab.items()} predicted_words = [reverse_english_vocab.get(idx.item(), '') for idx in predicted_indices] return " ".join(predicted_words[:max_output_len]) # Example usage json_file_path = "mergedv1.json" # Replace with your JSON file path tsv_file_path = "data_bal_en.tsv" # Replace with your TSV file path # Load and combine data flattened_json_data = flatten_json_data(json_file_path) flattened_tsv_data = parse_tsv_data(tsv_file_path) flattened_data = flattened_json_data + flattened_tsv_data # Check if data was loaded if not flattened_data: print("Error: No data loaded from JSON or TSV. Check file paths and formats.") else: model, balochi_vocab, english_vocab, max_balochi_len = train_model(flattened_data) balochi_input = "تئو چے کنغ پسند کنئے؟" translated_sentence = translate(model, balochi_input, balochi_vocab, english_vocab, max_balochi_len) print(f"Balochi Input: {balochi_input}") print(f"Translated Output: {translated_sentence}")