SamuelYang commited on
Commit
e8c5875
1 Parent(s): 3082e6e

Upload ms_marco_pvalue.py

Browse files
Files changed (1) hide show
  1. ms_marco_pvalue.py +189 -0
ms_marco_pvalue.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module computes evaluation metrics for MSMARCO dataset on the ranking task. Intenral hard coded eval files version. DO NOT PUBLISH!
3
+ Command line:
4
+ python msmarco_eval_ranking.py <path_to_candidate_file>
5
+
6
+ Creation Date : 06/12/2018
7
+ Last Modified : 4/09/2019
8
+ Authors : Daniel Campos <dacamp@microsoft.com>, Rutger van Haasteren <ruvanh@microsoft.com>
9
+ """
10
+ import sys
11
+ import statistics
12
+
13
+ from collections import Counter
14
+
15
+
16
+ def load_reference_from_stream(f):
17
+ """Load Reference reference relevant passages
18
+ Args:f (stream): stream to load.
19
+ Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
20
+ """
21
+ qids_to_relevant_passageids = {}
22
+ for l in f:
23
+ try:
24
+ l = l.strip().split('\t')
25
+ qid = int(l[0])
26
+ if qid in qids_to_relevant_passageids:
27
+ pass
28
+ else:
29
+ qids_to_relevant_passageids[qid] = []
30
+ qids_to_relevant_passageids[qid].append(int(l[1]))
31
+ except:
32
+ raise IOError('\"%s\" is not valid format' % l)
33
+ return qids_to_relevant_passageids
34
+
35
+
36
+ def load_reference(path_to_reference):
37
+ """Load Reference reference relevant passages
38
+ Args:path_to_reference (str): path to a file to load.
39
+ Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
40
+ """
41
+ with open(path_to_reference, 'r') as f:
42
+ qids_to_relevant_passageids = load_reference_from_stream(f)
43
+ return qids_to_relevant_passageids
44
+
45
+
46
+ def load_candidate_from_stream(f):
47
+ """Load candidate data from a stream.
48
+ Args:f (stream): stream to load.
49
+ Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
50
+ """
51
+ qid_to_ranked_candidate_passages = {}
52
+ for l in f:
53
+ try:
54
+ l = l.strip().split('\t')
55
+ qid = int(l[0])
56
+ pid = int(l[1])
57
+ rank = int(l[2])
58
+ if qid in qid_to_ranked_candidate_passages:
59
+ pass
60
+ else:
61
+ # By default, all PIDs in the list of 1000 are 0. Only override those that are given
62
+ tmp = [0] * 1000
63
+ qid_to_ranked_candidate_passages[qid] = tmp
64
+ qid_to_ranked_candidate_passages[qid][rank - 1] = pid
65
+ except:
66
+ raise IOError('\"%s\" is not valid format' % l)
67
+ return qid_to_ranked_candidate_passages
68
+
69
+
70
+ def load_candidate(path_to_candidate):
71
+ """Load candidate data from a file.
72
+ Args:path_to_candidate (str): path to file to load.
73
+ Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
74
+ """
75
+
76
+ with open(path_to_candidate, 'r') as f:
77
+ qid_to_ranked_candidate_passages = load_candidate_from_stream(f)
78
+ return qid_to_ranked_candidate_passages
79
+
80
+
81
+ def quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
82
+ """Perform quality checks on the dictionaries
83
+
84
+ Args:
85
+ p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
86
+ Dict as read in with load_reference or load_reference_from_stream
87
+ p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
88
+ Returns:
89
+ bool,str: Boolean whether allowed, message to be shown in case of a problem
90
+ """
91
+ message = ''
92
+ allowed = True
93
+
94
+ # Create sets of the QIDs for the submitted and reference queries
95
+ candidate_set = set(qids_to_ranked_candidate_passages.keys())
96
+ ref_set = set(qids_to_relevant_passageids.keys())
97
+
98
+ # Check that we do not have multiple passages per query
99
+ for qid in qids_to_ranked_candidate_passages:
100
+ # Remove all zeros from the candidates
101
+ duplicate_pids = set(
102
+ [item for item, count in Counter(qids_to_ranked_candidate_passages[qid]).items() if count > 1])
103
+
104
+ if len(duplicate_pids - set([0])) > 0:
105
+ message = "Cannot rank a passage multiple times for a single query. QID={qid}, PID={pid}".format(
106
+ qid=qid, pid=list(duplicate_pids)[0])
107
+ allowed = False
108
+
109
+ return allowed, message
110
+
111
+
112
+ def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
113
+ """Compute MRR metric
114
+ Args:
115
+ p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
116
+ Dict as read in with load_reference or load_reference_from_stream
117
+ p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
118
+ Returns:
119
+ dict: dictionary of metrics {'MRR': <MRR Score>}
120
+ """
121
+ topk=[5,10,20,50,100,200,500,1000]
122
+ accuracy = { k : [] for k in topk }
123
+ MaxMRRRank=max(topk)
124
+
125
+ ranking = []
126
+ for qid in qids_to_ranked_candidate_passages:
127
+ if qid in qids_to_relevant_passageids:
128
+ ranking.append(10**9)
129
+ target_pid = qids_to_relevant_passageids[qid]
130
+ candidate_pid = qids_to_ranked_candidate_passages[qid]
131
+ for i in range(0, MaxMRRRank):
132
+ if candidate_pid[i] in target_pid:
133
+ ranking.pop()
134
+ ranking.append(i + 1)
135
+ break
136
+ for k in topk:
137
+ accuracy[k].append(0 if ranking[-1] > k else 1)
138
+ if len(ranking) == 0:
139
+ raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?")
140
+
141
+
142
+ return accuracy
143
+
144
+
145
+ def compute_metrics_from_files(path_to_reference, path_to_candidate, perform_checks=True):
146
+ """Compute MRR metric
147
+ Args:
148
+ p_path_to_reference_file (str): path to reference file.
149
+ Reference file should contain lines in the following format:
150
+ QUERYID\tPASSAGEID
151
+ Where PASSAGEID is a relevant passage for a query. Note QUERYID can repeat on different lines with different PASSAGEIDs
152
+ p_path_to_candidate_file (str): path to candidate file.
153
+ Candidate file sould contain lines in the following format:
154
+ QUERYID\tPASSAGEID1\tRank
155
+ If a user wishes to use the TREC format please run the script with a -t flag at the end. If this flag is used the expected format is
156
+ QUERYID\tITER\tDOCNO\tRANK\tSIM\tRUNID
157
+ Where the values are separated by tabs and ranked in order of relevance
158
+ Returns:
159
+ dict: dictionary of metrics {'MRR': <MRR Score>}
160
+ """
161
+
162
+ qids_to_relevant_passageids = load_reference(path_to_reference)
163
+ qids_to_ranked_candidate_passages = load_candidate(path_to_candidate)
164
+ if perform_checks:
165
+ allowed, message = quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)
166
+ if message != '': print(message)
167
+
168
+ return compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)
169
+
170
+
171
+ def main():
172
+ """Command line:
173
+ python msmarco_eval_ranking.py <path to reference> <path_to_candidate_file>
174
+ """
175
+ import scipy.stats as stats
176
+ topk=[5,10,20,50,100,200,500,1000]
177
+ path_to_candidate_a = "InfoCSE_ICT.tsv.marco"
178
+ path_to_reference = "marco/qrels.dev.tsv"
179
+ all_scores_a = compute_metrics_from_files(path_to_reference, path_to_candidate_a)
180
+ for method in ["SimCSE","ConSERT","MirrorBERT","ICT","CPC","DeCLUTR","CONPONO"]:
181
+ path_to_candidate_b = "{}.tsv.marco".format(method)
182
+ print(path_to_candidate_b)
183
+ all_scores_b = compute_metrics_from_files(path_to_reference, path_to_candidate_b)
184
+ for k in topk:
185
+ stat_val, p_val = stats.ttest_ind(all_scores_a[k], all_scores_b[k])
186
+ print(str(k) + ': ' + str(p_val / 2))
187
+
188
+ if __name__ == '__main__':
189
+ main()