traffic_signal_images / traffic_signal_images.py
Sayali9141's picture
Update traffic_signal_images.py
e1cf256 verified
import csv
import json
import os
from typing import List
import datasets
import logging
from datetime import datetime, timedelta
import pandas as pd
import requests
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Singapore Traffic Image Dataset},
author={huggingface, Inc.
},
year={2023}
}
"""
_DESCRIPTION = """\
This dataset contains traffic images from traffic signal cameras of singapore. The images are captured at 1.5 minute interval from 6 pm to 7 pm everyday for the month of January 2024.
"""
_HOMEPAGE = "https://beta.data.gov.sg/collections/354/view"
# _URL = "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
class TrafficSignalImages(datasets.GeneratorBasedBuilder):
"""My dataset is in the form of CSV file hosted on my github. It contains traffic images from 1st Jan 2024 to 31st Jan 2024 from 6 to 7 pm everyday. The original code to fetch these images has been commented in the generate_examples function."""
# _URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"timestamp": datasets.Value("string"),
"camera_id": datasets.Value("string"),
"latitude": datasets.Value("float"),
"longitude": datasets.Value("float"),
"image_url": datasets.Image(),
"image_metadata": datasets.Value("string")
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
# The URLs should be the paths to the raw files in the Hugging Face dataset repository
urls_to_download = {
"csv_file": "https://raw.githubusercontent.com/Sayali-pingle/HuggingFace--Traffic-Image-Dataset/main/camera_data.csv"
}
downloaded_files = dl_manager.download_and_extract(urls_to_download['csv_file'])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"csv_file_path": downloaded_files,
},
),
]
def _generate_examples(self, csv_file_path):
# This method will yield examples from your dataset
# start_date = datetime(2024, 1, 1, 18, 0, 0)
# end_date = datetime(2024, 1, 2, 19, 0, 0)
# interval_seconds = 240
# date_time_strings = [
# (current_date + timedelta(seconds=seconds)).strftime('%Y-%m-%dT%H:%M:%S+08:00')
# for current_date in pd.date_range(start=start_date, end=end_date, freq='D')
# for seconds in range(0, 3600, interval_seconds)
# ]
# url = 'https://api.data.gov.sg/v1/transport/traffic-images'
# camera_data = []
# for date_time in date_time_strings:
# params = {'date_time': date_time}
# response = requests.get(url, params=params)
# if response.status_code == 200:
# data = response.json()
# camera_data.extend([
# {
# 'timestamp': item['timestamp'],
# 'camera_id': camera['camera_id'],
# 'latitude': camera['location']['latitude'],
# 'longitude': camera['location']['longitude'],
# 'image_url': camera['image'],
# 'image_metadata': camera['image_metadata']
# }
# for item in data['items']
# for camera in item['cameras']
# ])
# else:
# print(f"Error: {response.status_code}")
camera_data= pd.read_csv(csv_file_path)
for idx, example in camera_data.iterrows():
yield idx, {
"timestamp": example["timestamp"],
"camera_id": example["camera_id"],
"latitude": example["latitude"],
"longitude": example["longitude"],
"image_url": example["image_url"],
"image_metadata": example["image_metadata"]
}