diff --git "a/part5.ipynb" "b/part5.ipynb" --- "a/part5.ipynb" +++ "b/part5.ipynb" @@ -16953,481 +16953,7384 @@ "display": null, "left": null } + }, + "03e6c647fe6c49c193e17923cd72213f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_3ec2312d248a4f0285783b494a3fb547", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_4ffa37d7b0134de181481cc3936859da", + "IPY_MODEL_4a8f6e9610004f119ee8e564107df119", + "IPY_MODEL_5d43930587a84d3e85e12ee8557df8c0" + ] + } + }, + "3ec2312d248a4f0285783b494a3fb547": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4ffa37d7b0134de181481cc3936859da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_4aa1da1d8e4641c9a115a62393a3bcad", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_c9fcdd6cd176466691484a17093b8d60" + } + }, + "4a8f6e9610004f119ee8e564107df119": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_e4340e98a5224118b5d42d5b988e2fc8", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 1, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 1, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_7cc88f2638e540e9a6a0509440172745" + } + }, + "5d43930587a84d3e85e12ee8557df8c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_84a5d31ee22f418db723f0cfc591fb26", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 1/1 [00:02<00:00, 2.63s/it]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_0d4befa90f574b828656219120b2e02d" + } + }, + "4aa1da1d8e4641c9a115a62393a3bcad": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "c9fcdd6cd176466691484a17093b8d60": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e4340e98a5224118b5d42d5b988e2fc8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "7cc88f2638e540e9a6a0509440172745": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "84a5d31ee22f418db723f0cfc591fb26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "0d4befa90f574b828656219120b2e02d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "9d8a6b5ea714493eac3143fd0150efc8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_b9cd08d2c5b2455097ea530a1cc7204a", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_3cba410ef1ec424a8b8ae0ee74509b0b", + "IPY_MODEL_41eb6795c64247d9a7ab79a2cb5d4ad2", + "IPY_MODEL_020a656eb95d46dc99feae468307f393" + ] + } + }, + "b9cd08d2c5b2455097ea530a1cc7204a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "3cba410ef1ec424a8b8ae0ee74509b0b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_3ca413eee03b4b10a59e78671ebbb7f0", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a342114b75e04abb8c20e74f9c4e528a" + } + }, + "41eb6795c64247d9a7ab79a2cb5d4ad2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_79ab509b83a34de49f0c928a09eecf8d", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 12243735, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 12243735, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_1a639fcaaccd4f3eae707b5d96c663f4" + } + }, + "020a656eb95d46dc99feae468307f393": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_2650facb146b4e078b223c77128816fc", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 12.2M/12.2M [00:00<00:00, 17.3MB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_85cbfc47fe414f85ab164f13201aca7c" + } + }, + "3ca413eee03b4b10a59e78671ebbb7f0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "a342114b75e04abb8c20e74f9c4e528a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "79ab509b83a34de49f0c928a09eecf8d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "1a639fcaaccd4f3eae707b5d96c663f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "2650facb146b4e078b223c77128816fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "85cbfc47fe414f85ab164f13201aca7c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "de6c95143f2a44e5a9eb9727d16a3c87": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_d21c0488d2664abaa722fcefdf1a4351", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_d936d8fd98904ac78f4565388bf60d19", + "IPY_MODEL_bf1799f909d246bea028544c0d10442d", + "IPY_MODEL_37169635be93431eb62a276564f2ae3c" + ] + } + }, + "d21c0488d2664abaa722fcefdf1a4351": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "d936d8fd98904ac78f4565388bf60d19": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_6563f9ab8a0e4bc9a6e7c1ac72e102a1", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_73a623bf1076460b98666be79bdf8f56" + } + }, + "bf1799f909d246bea028544c0d10442d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_dac184e638bd444db50b08a20c0d25d1", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 1, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 1, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_ebdeee2ecec94f67b10b9a9e4adc8354" + } + }, + "37169635be93431eb62a276564f2ae3c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_207d06f50d0346579474188e7bf56de0", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 1/1 [00:00<00:00, 14.22it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_ef2fe559db30422990973c8f99be193c" + } + }, + "6563f9ab8a0e4bc9a6e7c1ac72e102a1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "73a623bf1076460b98666be79bdf8f56": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "dac184e638bd444db50b08a20c0d25d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "ebdeee2ecec94f67b10b9a9e4adc8354": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "207d06f50d0346579474188e7bf56de0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "ef2fe559db30422990973c8f99be193c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "28fb2aace5f24254871e5b08e5dfee58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_7da6b95d0aaf4bfc843d265c5a105644", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_bcbc95df2dbe443c86dca31423f1c831", + "IPY_MODEL_fa3018954eef43008c439be3e9e43f31", + "IPY_MODEL_b52cef6d99834adc82e2d922d671d5e5" + ] + } + }, + "7da6b95d0aaf4bfc843d265c5a105644": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "bcbc95df2dbe443c86dca31423f1c831": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_07292b80756a4cbfb1ad5ecf29bb1ea6", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_8b4ce7eafd7c48b595896ce9deb28727" + } + }, + "fa3018954eef43008c439be3e9e43f31": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_d71b3864e5cf4675b36b7033fbd21ffc", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 4, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_e1288966043645b8a0e11e9c1b50c75f" + } + }, + "b52cef6d99834adc82e2d922d671d5e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_9718ce6bacaa47feb3e63ddebff37573", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 4/4 [00:00<00:00, 3.54ba/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_948f5cd3191644fca249520e8823dd8c" + } + }, + "07292b80756a4cbfb1ad5ecf29bb1ea6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "8b4ce7eafd7c48b595896ce9deb28727": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "d71b3864e5cf4675b36b7033fbd21ffc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "e1288966043645b8a0e11e9c1b50c75f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "9718ce6bacaa47feb3e63ddebff37573": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "948f5cd3191644fca249520e8823dd8c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "ae37ec082a0a4e70888051606978615b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_364e2679d5074514b58fee975c4a53df", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_bf268210f76f4015924f6f2df4c1b53e", + "IPY_MODEL_34334dcf4d5440cba4d64bba5a2de657", + "IPY_MODEL_66a81c96ed064c68985bc48e50276648" + ] + } + }, + "364e2679d5074514b58fee975c4a53df": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "bf268210f76f4015924f6f2df4c1b53e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_8fb28ea599b04326a06f0eda4439320d", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_dc9da6d556984627919e791dbcd5371c" + } + }, + "34334dcf4d5440cba4d64bba5a2de657": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_ed3c4e64778543e78b20f5b03e6bcdef", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 2964, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 2964, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_62d49853f50d4a218b6f97bb737e6114" + } + }, + "66a81c96ed064c68985bc48e50276648": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_cf541ed1ff9f43ff8eba08fade24ff7f", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 2964/2964 [00:00<00:00, 4036.80ex/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_142bfc19ec83403f9c63c7cca97dc04c" + } + }, + "8fb28ea599b04326a06f0eda4439320d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "dc9da6d556984627919e791dbcd5371c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "ed3c4e64778543e78b20f5b03e6bcdef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "62d49853f50d4a218b6f97bb737e6114": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "cf541ed1ff9f43ff8eba08fade24ff7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "142bfc19ec83403f9c63c7cca97dc04c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "ac519aee5cf24ab7bc43e03362ac846b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_569f131bd2be4114beb4eb8b106809fe", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_918b7376183447a6944c38c33d37db97", + "IPY_MODEL_aa1de0f777de43c08f4b75d54c18cb7b", + "IPY_MODEL_fc36505e187147688363333b99a66f04" + ] + } + }, + "569f131bd2be4114beb4eb8b106809fe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "918b7376183447a6944c38c33d37db97": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_29a9290e2ad34791b3267bf8a0b16d0b", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a33c011d408c450cae78772d031339ca" + } + }, + "aa1de0f777de43c08f4b75d54c18cb7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_721af05bd5984a19b607ebc99c80368e", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 3, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 3, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_eb45e0703d9e402fa68a2369af63c2ad" + } + }, + "fc36505e187147688363333b99a66f04": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_dd8ed3afa706430d8293b48506d52c8b", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 3/3 [00:00<00:00, 9.23ba/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_5513066b95634a8887d4d18063ecb8c0" + } + }, + "29a9290e2ad34791b3267bf8a0b16d0b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "a33c011d408c450cae78772d031339ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "721af05bd5984a19b607ebc99c80368e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "eb45e0703d9e402fa68a2369af63c2ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "dd8ed3afa706430d8293b48506d52c8b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "5513066b95634a8887d4d18063ecb8c0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "5a4dc5a256824827870a78c87c8e8c4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_1aaa0a24b17f44d58e6fccd13256caca", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_78873c13d0cc49e6bb2cc259e0c86ea3", + "IPY_MODEL_02640996e26844e48d3245ad7c43e4f5", + "IPY_MODEL_123b08169ce24b0689a992bbc19b2135" + ] + } + }, + "1aaa0a24b17f44d58e6fccd13256caca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "78873c13d0cc49e6bb2cc259e0c86ea3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_f3c254526fad47758c3072a978cfee71", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_c73aac0cb8014907aab798ef9d7b37a1" + } + }, + "02640996e26844e48d3245ad7c43e4f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_fe3ae3aec9a240788795df071e20d8db", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 2964, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 2964, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_2901f2d3c27849f9a8f97a5642ceb7d9" + } + }, + "123b08169ce24b0689a992bbc19b2135": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_9d56a151c64d49c9a2755021c664f0ef", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 2964/2964 [00:00<00:00, 3603.05ex/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_e0e5651389bc460096511ff8f3cf1cbc" + } + }, + "f3c254526fad47758c3072a978cfee71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "c73aac0cb8014907aab798ef9d7b37a1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "fe3ae3aec9a240788795df071e20d8db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "2901f2d3c27849f9a8f97a5642ceb7d9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "9d56a151c64d49c9a2755021c664f0ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "e0e5651389bc460096511ff8f3cf1cbc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "17ef33341ad0458886e26c11894c420d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_c5981608d19a41c58c1fcefe11c197c5", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_c4b26401c3c84048946cc091b32b20c6", + "IPY_MODEL_7a05d9acf5c14228baf64ac03b335543", + "IPY_MODEL_499d4d1adeb84a50a5783dab255cef85" + ] + } + }, + "c5981608d19a41c58c1fcefe11c197c5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "c4b26401c3c84048946cc091b32b20c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_019e7f11f6684fe78df45b419832c80c", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_ca89e0d74c0a48ff8d42b6f38381f31c" + } + }, + "7a05d9acf5c14228baf64ac03b335543": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_4018573d42e54eefae4952855382a065", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 363, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 363, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_719db710c06145918f2f7bdb6a487bc0" + } + }, + "499d4d1adeb84a50a5783dab255cef85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_55bbb091e000495e88b6ff75f80bedf5", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 363/363 [00:00<00:00, 9.60kB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a12fa9ea4f534036a1b83709ec86b3b2" + } + }, + "019e7f11f6684fe78df45b419832c80c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "ca89e0d74c0a48ff8d42b6f38381f31c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4018573d42e54eefae4952855382a065": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "719db710c06145918f2f7bdb6a487bc0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "55bbb091e000495e88b6ff75f80bedf5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "a12fa9ea4f534036a1b83709ec86b3b2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "fcf1aa45d9714ed5896b76cc05839438": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_b007cdb9d6bd41fca12edb9da0dc8c17", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_4e236421cc654430a0fed694d2458f12", + "IPY_MODEL_0464b9b06ddd4863893c45af187e24ed", + "IPY_MODEL_1edd1ab267f14fc4b4a3fcba6719ec59" + ] + } + }, + "b007cdb9d6bd41fca12edb9da0dc8c17": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4e236421cc654430a0fed694d2458f12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_b6b5c81be0c843469c2afa78156e02c5", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_ce2f9d476dbb419f9844fc3c26cc2a90" + } + }, + "0464b9b06ddd4863893c45af187e24ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_e26795c5d1964e8eb9873f86dde076e4", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 231536, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 231536, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_f47c8ece8cd44a65bafd257f0ac1ec3a" + } + }, + "1edd1ab267f14fc4b4a3fcba6719ec59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_fa5b934068f1486795eeaccffee254df", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 226k/226k [00:00<00:00, 290kB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_3377ccdcd9544483becc7fd97be7daac" + } + }, + "b6b5c81be0c843469c2afa78156e02c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "ce2f9d476dbb419f9844fc3c26cc2a90": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e26795c5d1964e8eb9873f86dde076e4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "f47c8ece8cd44a65bafd257f0ac1ec3a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "fa5b934068f1486795eeaccffee254df": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "3377ccdcd9544483becc7fd97be7daac": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "29241bc199444af68520b06571e75595": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_0010a7d39ead4849a53f73939f48c397", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_81b38135eb654811984d91300624e11c", + "IPY_MODEL_13b27d45cd3943c18ab17dddbe6d3ade", + "IPY_MODEL_78efd1502bcf429e91f7e1dd28d00bdb" + ] + } + }, + "0010a7d39ead4849a53f73939f48c397": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "81b38135eb654811984d91300624e11c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_71bf4bc99c424340b579aeb9467de1bb", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_37f29c79c5f943a9b42785a45ea5a5b8" + } + }, + "13b27d45cd3943c18ab17dddbe6d3ade": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_e24178326b704fe0b15e32659ccb2269", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 466021, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 466021, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_34329feb46184623ad891b11cc5b71e1" + } + }, + "78efd1502bcf429e91f7e1dd28d00bdb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_3f47b2df52a747519339d5171557ef5e", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 455k/455k [00:00<00:00, 419kB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_954a711a735a44239ca7430ff75caf22" + } + }, + "71bf4bc99c424340b579aeb9467de1bb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "37f29c79c5f943a9b42785a45ea5a5b8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e24178326b704fe0b15e32659ccb2269": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "34329feb46184623ad891b11cc5b71e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "3f47b2df52a747519339d5171557ef5e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "954a711a735a44239ca7430ff75caf22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "5582e5cf45654b459ff906ac64c043ab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_acc3d0880c79467baccff9561e3840d8", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_db1c005f0f6d4f32ba3250dbe1ee1eee", + "IPY_MODEL_6455679c8d6f4d578d67037301136c3a", + "IPY_MODEL_e91f5798ffed45ec804b82b982665d76" + ] + } + }, + "acc3d0880c79467baccff9561e3840d8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "db1c005f0f6d4f32ba3250dbe1ee1eee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_a807a30eb9dd409cb00e48f2651a9d13", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_2bca8c99d35e4f719e02cb904d613c22" + } + }, + "6455679c8d6f4d578d67037301136c3a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_714ea4fc2a48432288a80d677af89c11", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 239, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 239, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_7717741b185e4e43bffad47b9ffffb10" + } + }, + "e91f5798ffed45ec804b82b982665d76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_e5df5e4a6e30431a894fe649a272c5e2", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 239/239 [00:00<00:00, 5.99kB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_bd287c3b6e4c4fab95f70bed8869d23b" + } + }, + "a807a30eb9dd409cb00e48f2651a9d13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "2bca8c99d35e4f719e02cb904d613c22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "714ea4fc2a48432288a80d677af89c11": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "7717741b185e4e43bffad47b9ffffb10": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e5df5e4a6e30431a894fe649a272c5e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "bd287c3b6e4c4fab95f70bed8869d23b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "11b2022c4fa94207bc693784f2801927": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_fac007429d3c44f8bfcf1ce30597ecab", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_7145e6b03bbd45768d0056c41bf38b4c", + "IPY_MODEL_67329f0566734b7e9a99aac0676abda5", + "IPY_MODEL_0276fca18e654172a5679bb8a1883799" + ] + } + }, + "fac007429d3c44f8bfcf1ce30597ecab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "7145e6b03bbd45768d0056c41bf38b4c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_d64a0cb35b4f46d8a02d710eec37cd96", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_5723658eedd14849bd460083d0f257ca" + } + }, + "67329f0566734b7e9a99aac0676abda5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_0b5c75456d464522b8357139ca2d2886", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 571, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 571, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_92b9d30c853c4f3bb43bc0730fdff87f" + } + }, + "0276fca18e654172a5679bb8a1883799": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_4294d6ecce5e44fc919232d209f60029", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 571/571 [00:00<00:00, 4.00kB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_2041d8f673d6477bb32db807a095dd1c" + } + }, + "d64a0cb35b4f46d8a02d710eec37cd96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "5723658eedd14849bd460083d0f257ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "0b5c75456d464522b8357139ca2d2886": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "92b9d30c853c4f3bb43bc0730fdff87f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "4294d6ecce5e44fc919232d209f60029": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "2041d8f673d6477bb32db807a095dd1c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "9fe98728800a48c5bf7fed913a93edde": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_864ad01eb38d40da80ee77077e8125fc", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_c6846f9d2867407cba05ed2494bf1ab8", + "IPY_MODEL_fc8e2e3549c74775aaae696628d7b586", + "IPY_MODEL_21e6642e21c9497c821cd5ad9c4fcc59" + ] + } + }, + "864ad01eb38d40da80ee77077e8125fc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "c6846f9d2867407cba05ed2494bf1ab8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_d9be7fb4a80641d7b3559b5d5f06dfb3", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Downloading: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_b15a43e8d6834cf28703c13bf6eb28c9" + } + }, + "fc8e2e3549c74775aaae696628d7b586": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_8dbf289cfcb14576ad33ab636096231a", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 438011953, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 438011953, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_fa45c3e0f51f4b358542b80db63c1183" + } + }, + "21e6642e21c9497c821cd5ad9c4fcc59": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_07ac52faa9fe40a0a030fbf4d9cd0093", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 418M/418M [00:27<00:00, 16.6MB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_3324efb2d994404b9412ac3ee190d1e1" + } + }, + "d9be7fb4a80641d7b3559b5d5f06dfb3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "b15a43e8d6834cf28703c13bf6eb28c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "8dbf289cfcb14576ad33ab636096231a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "fa45c3e0f51f4b358542b80db63c1183": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "07ac52faa9fe40a0a030fbf4d9cd0093": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "3324efb2d994404b9412ac3ee190d1e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "840e3d044b61434b927a363a1e371c51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_75e79e8b57094c5c86a22fbd707297aa", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_fe188a69ba5841db85ddb792d51f2f02", + "IPY_MODEL_387de01c687f400cb5d449d2b90356e7", + "IPY_MODEL_91d4da24dbd74377be629f54b5d7c3f2" + ] + } + }, + "75e79e8b57094c5c86a22fbd707297aa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "fe188a69ba5841db85ddb792d51f2f02": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_fb71981120674709a6b4aa847372a51f", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_e329e0c636d746c19dfd6a6f038452cf" + } + }, + "387de01c687f400cb5d449d2b90356e7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_c9f3a2e8711c4161869b3509d3c67559", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 2964, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 2964, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_e861f6d49ede43b185c6cc75e86fa4f6" + } + }, + "91d4da24dbd74377be629f54b5d7c3f2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_e2e15b4ac28a48cb8a5aa4b2a31754b3", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 2964/2964 [03:29<00:00, 18.39ex/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_9208efb32be24dffb7415fc067d05085" + } + }, + "fb71981120674709a6b4aa847372a51f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "e329e0c636d746c19dfd6a6f038452cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "c9f3a2e8711c4161869b3509d3c67559": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "e861f6d49ede43b185c6cc75e86fa4f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e2e15b4ac28a48cb8a5aa4b2a31754b3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "9208efb32be24dffb7415fc067d05085": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "942e6ad22f044d44a0fe23ce819929ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_b4dcfc1489c149c3b65278935daabfab", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_fe6cb47fda0c4cbe81f7a1155b62fc49", + "IPY_MODEL_6edd4d9e1fe64e21b6184ad19b0df245", + "IPY_MODEL_ed04f4f6194642209823867da637ea61" + ] + } + }, + "b4dcfc1489c149c3b65278935daabfab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "fe6cb47fda0c4cbe81f7a1155b62fc49": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_c99de0e9bf274f798632aa01086fb54d", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "Upload file embedded_dataset.jsonl: 100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_6755bb29e4d149dbbac4cc86cadece2a" + } + }, + "6edd4d9e1fe64e21b6184ad19b0df245": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_a1447add35f44261beb0db15ad0b60a6", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 47830288, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 47830288, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_48d19771cb3d49df8e787dd22a83858e" + } + }, + "ed04f4f6194642209823867da637ea61": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_a407c45fbc254ed78dec7fa950afc716", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 45.6M/45.6M [00:07<00:00, 7.05MB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_1baee4e920624de1973950a673643baf" + } + }, + "c99de0e9bf274f798632aa01086fb54d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "6755bb29e4d149dbbac4cc86cadece2a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "a1447add35f44261beb0db15ad0b60a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "48d19771cb3d49df8e787dd22a83858e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "a407c45fbc254ed78dec7fa950afc716": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "1baee4e920624de1973950a673643baf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + } + } + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JPdOQa337CFz", + "outputId": "7218cee2-fca5-4bf5-a7da-77d15168dbd8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting datasets\n", + " Downloading datasets-1.17.0-py3-none-any.whl (306 kB)\n", + "\u001b[?25l\r\u001b[K |█ | 10 kB 24.4 MB/s eta 0:00:01\r\u001b[K |██▏ | 20 kB 27.5 MB/s eta 0:00:01\r\u001b[K |███▏ | 30 kB 31.8 MB/s eta 0:00:01\r\u001b[K |████▎ | 40 kB 23.0 MB/s eta 0:00:01\r\u001b[K |█████▍ | 51 kB 9.2 MB/s eta 0:00:01\r\u001b[K |██████▍ | 61 kB 10.2 MB/s eta 0:00:01\r\u001b[K |███████▌ | 71 kB 8.1 MB/s eta 0:00:01\r\u001b[K |████████▋ | 81 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████▋ | 92 kB 8.9 MB/s eta 0:00:01\r\u001b[K |██████████▊ | 102 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████▊ | 112 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████▉ | 122 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████ | 133 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████ | 143 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████ | 153 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████▏ | 163 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████▏ | 174 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████▎ | 184 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 194 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████▍ | 204 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████▌ | 215 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████▌ | 225 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████▋ | 235 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▊ | 245 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▊ | 256 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▉ | 266 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▉ | 276 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████ | 286 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████���█████████████████ | 296 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 306 kB 8.0 MB/s \n", + "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.1.5)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.19.5)\n", + "Requirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n", + "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)\n", + "Collecting xxhash\n", + " Downloading xxhash-2.0.2-cp37-cp37m-manylinux2010_x86_64.whl (243 kB)\n", + "\u001b[K |████████████████████████████████| 243 kB 52.4 MB/s \n", + "\u001b[?25hRequirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n", + "Collecting fsspec[http]>=2021.05.0\n", + " Downloading fsspec-2021.11.1-py3-none-any.whl (132 kB)\n", + "\u001b[K |████████████████████████████████| 132 kB 48.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)\n", + "Requirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n", + "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.62.3)\n", + "Collecting aiohttp\n", + " Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n", + "\u001b[K |████████████████████████████████| 1.1 MB 46.6 MB/s \n", + "\u001b[?25hCollecting huggingface-hub<1.0.0,>=0.1.0\n", + " Downloading huggingface_hub-0.2.1-py3-none-any.whl (61 kB)\n", + "\u001b[K |████████████████████████████████| 61 kB 516 kB/s \n", + "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.8.2)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.13)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.4.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.10.0.2)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.6)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.24.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2021.10.8)\n", + "Collecting frozenlist>=1.1.1\n", + " Downloading frozenlist-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (192 kB)\n", + "\u001b[K |████████████████████████████████| 192 kB 48.9 MB/s \n", + "\u001b[?25hCollecting multidict<7.0,>=4.5\n", + " Downloading multidict-5.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (160 kB)\n", + "\u001b[K |████████████████████████████████| 160 kB 55.9 MB/s \n", + "\u001b[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", + " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.2.0)\n", + "Collecting yarl<2.0,>=1.0\n", + " Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n", + "\u001b[K |████████████��███████████████████| 271 kB 56.3 MB/s \n", + "\u001b[?25hCollecting aiosignal>=1.1.2\n", + " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", + "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.8)\n", + "Collecting asynctest==0.13.0\n", + " Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.6.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n", + "Installing collected packages: multidict, frozenlist, yarl, asynctest, async-timeout, aiosignal, fsspec, aiohttp, xxhash, huggingface-hub, datasets\n", + "Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-1.17.0 frozenlist-1.2.0 fsspec-2021.11.1 huggingface-hub-0.2.1 multidict-5.2.0 xxhash-2.0.2 yarl-1.7.2\n" + ] + } + ], + "source": [ + "!pip install datasets" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install transformers" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "d3q7HTmjM1XQ", + "outputId": "24c42fd7-681c-4665-c073-027eb81269f7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting transformers\n", + " Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB)\n", + "\u001b[K |████████████████████████████████| 3.4 MB 6.8 MB/s \n", + "\u001b[?25hCollecting tokenizers<0.11,>=0.10.1\n", + " Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n", + "\u001b[K |████████████████████████████████| 3.3 MB 45.7 MB/s \n", + "\u001b[?25hRequirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.2.1)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n", + "Collecting pyyaml>=5.1\n", + " Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n", + "\u001b[K |████████████████████████████████| 596 kB 72.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.4.0)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.62.3)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.19.5)\n", + "Collecting sacremoses\n", + " Downloading sacremoses-0.0.46-py3-none-any.whl (895 kB)\n", + "\u001b[K |████████████████████████████████| 895 kB 60.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.8.2)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (3.10.0.2)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.6)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.6.0)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2021.10.8)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.15.0)\n", + "Installing collected packages: pyyaml, tokenizers, sacremoses, transformers\n", + " Attempting uninstall: pyyaml\n", + " Found existing installation: PyYAML 3.13\n", + " Uninstalling PyYAML-3.13:\n", + " Successfully uninstalled PyYAML-3.13\n", + "Successfully installed pyyaml-6.0 sacremoses-0.0.46 tokenizers-0.10.3 transformers-4.15.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!wget \"https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip\"" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lwino22W7fyT", + "outputId": "76d00137-ad25-4748-c7f5-40244220092f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2021-12-26 14:04:06-- https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip\n", + "Resolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.252\n", + "Connecting to archive.ics.uci.edu (archive.ics.uci.edu)|128.195.10.252|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 42989872 (41M) [application/x-httpd-php]\n", + "Saving to: ‘drugsCom_raw.zip’\n", + "\n", + "drugsCom_raw.zip 100%[===================>] 41.00M 89.9MB/s in 0.5s \n", + "\n", + "2021-12-26 14:04:07 (89.9 MB/s) - ‘drugsCom_raw.zip’ saved [42989872/42989872]\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!unzip drugsCom_raw.zip" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l_-BJiC-7rQV", + "outputId": "bdab5aaf-b1b7-4ffa-9e8b-7eb3842c5072" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Archive: drugsCom_raw.zip\n", + " inflating: drugsComTest_raw.tsv \n", + " inflating: drugsComTrain_raw.tsv \n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from datasets import load_dataset\n", + "data_files = {\"train\": \"drugsComTrain_raw.tsv\", \"test\": \"drugsComTest_raw.tsv\"}\n", + "drug_dataset = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 185, + "referenced_widgets": [ + "281593e9e8964ec0a32bef55b9deb148", + "5f0d72f242b44bc89754b704a522b08d", + "cae22167d54c49a4a8f9ff94e8dd01c4", + "424971c141754da8ac684fe5ce82ca4e", + "49bc85aa3b7c407b943bcea36d80d580", + "281c6fe1deef4d0d87b242c045070af3", + "97df58e119544ff9b3f78fe0ef94338c", + "b37b24bd9ea64a06868686c9510dc42e", + "e7c1ff922d8a48dcb55f0f052e0b2b86", + "0f9dc4643ba245119c2856250ee0d021", + "26a49bd5cf64468c8dd324e4d91287dd", + "8e47e67ad1ac4234aa5fdef4061a21e9", + "d6b655148d244d8a9039fd5673bf3337", + "46962589203c460ab7936b757440928d", + "392a948a2af5411db0ebb9075e7f6227", + "6a950ddd18d04ce19874f9c8749973d2", + "50893c85dc614ca0bb31b465e4a2def4", + "e00fb5fe5f3e4b8f8541282aba8b38c3", + "b1aaf6d7c49446879e1481415c61f9a8", + "41e05be2c32743d1978442a33a1cb8ba", + "c9ecc03947144c928e13644d62374390", + "06ad456028e1450b8bea25886dd71e5c", + "0af29e5651934d76baf4d1787889d198", + "0a30f87297ab4a7bb81ad180c0226454", + "494e72dc0a4d4abbbf758072d5667a8b", + "31b94f12c77c4dc381e2e65d7fa38fa2", + "7bf474933cdb47c296c3c98c4de8c19a", + "1575f71559f541d7afea3233e6fe4586", + "402e764b7a8749e79fe9e48f0bbb5763", + "f60f3d4dd5f94a2f84088f0c7ffb469c", + "3a8b24fa12dc4d6c80f681042a5cfc2a", + "77e9801f54db4a539402c1ddc08f577f", + "f462fd77083f4c8684043e47465b5867" + ] + }, + "id": "MIhgoeS47yGQ", + "outputId": "1da4bd07-9f7d-4762-c471-bf21070d71db" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Using custom data configuration default-3761173c276c0a9a\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading and preparing dataset csv/default to /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "281593e9e8964ec0a32bef55b9deb148", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0/2 [00:00 30)\n", + "print(drug_dataset.num_rows)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 98, + "referenced_widgets": [ + "19972ac7a9524fae88bec023d5624134", + "bcb77810547a49d784d8c8987055857f", + "47ea578ad8e6466b9ed354e382d8c060", + "1a16cbf23aea441ba8afa1e1b40562bb", + "67b0d0d7407a450ea786fc685d3d20c9", + "b9afc23a3cc7467abb9863b0dde54f68", + "77e0cf1cc69843c98529fb2e90ac34d1", + "c38efe098a7346aa93ffa8e629f4de23", + "681b924c19944c3a948de88f05cb028b", + "860495d9fa444c7a8c4d411aad233865", + "5a15918a9e544ac586f1798602cfff8d", + "b2e8cd19f16843a6a85c23cc607bccf3", + "ec7b9dd6548e41b39a0cec8bee978ad6", + "45155064990a4a3ba6a357be809427d6", + "4aa1c46e33fd46dba8af7cf0bb5d3994", + "ff8a6ab06c2c4669ade31e65adf6a6f2", + "4ebacf83a7094147b16b8b4120e56e9d", + "5a2667b5f4424819b1e23889697d3299", + "cc022b7d144749de93fbfed810aa6c97", + "8c9ed4f2370d4deaaf5f54ede278f2f6", + "2587b7d3a95a49eb8ac86a2abaf38f7b", + "8ecd319a00bf472eb67b4f2065876f66" + ] + }, + "id": "GS2CTTiZFyMh", + "outputId": "a3f6e7f1-c758-4553-bbf4-06db0fadf09d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "19972ac7a9524fae88bec023d5624134", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0/161 [00:00\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtokenized_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrug_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenize_and_split\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, desc)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 511\u001b[0m )\n\u001b[0;32m--> 512\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 513\u001b[0m }\n\u001b[1;32m 514\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 511\u001b[0m )\n\u001b[0;32m--> 512\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 513\u001b[0m }\n\u001b[1;32m 514\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)\u001b[0m\n\u001b[1;32m 2108\u001b[0m \u001b[0mnew_fingerprint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnew_fingerprint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2109\u001b[0m \u001b[0mdisable_tqdm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdisable_tqdm\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2110\u001b[0;31m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2111\u001b[0m )\n\u001b[1;32m 2112\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"Dataset\"\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"self\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;31m# apply actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 518\u001b[0;31m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"DatasetDict\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 519\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 520\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 483\u001b[0m }\n\u001b[1;32m 484\u001b[0m \u001b[0;31m# apply actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 485\u001b[0;31m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"DatasetDict\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 486\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[0;31m# re-apply format to the output\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 409\u001b[0m \u001b[0;31m# Call actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 410\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 411\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 412\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 413\u001b[0m \u001b[0;31m# Update fingerprint of in-place transforms + update in-place history of transforms\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m_map_single\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)\u001b[0m\n\u001b[1;32m 2484\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2485\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2486\u001b[0;31m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2487\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mupdate_data\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwriter\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2488\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfinalize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# close_stream=bool(buf_writer is None)) # We only close if we are writing in a file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py\u001b[0m in \u001b[0;36mwrite_batch\u001b[0;34m(self, batch_examples, writer_batch_size)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0mtyped_sequence\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mOptimizedTypedSequence\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_examples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtry_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol_try_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcol\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mtyped_sequence_examples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtyped_sequence\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0mpa_table\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pydict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtyped_sequence_examples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter_batch_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.from_pydict\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.from_arrays\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.validate\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mArrowInvalid\u001b[0m: Column 1 named condition expected length 1463 but got length 1000" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tokenized_dataset = drug_dataset.map(\n", + " tokenize_and_split, batched=True, remove_columns=drug_dataset[\"train\"].column_names\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "832da29a59414c4e96a6a84209b63b02", + "b4fae8961b334965b4c498ebac76b45e", + "3a07c7f3b06f42028bb9537332b03260", + "16630bd3a3b0407e8745e8bbfcf674d1", + "e847d3429fa44a81b15ad04c357f84a4", + "946270bdde754cbd93bbe0c69356b22e", + "c697a08fd94e44628f2d953e15464949", + "cb73171a78514f029bb81f1bc62f9e3b", + "ff8de08b534d4eb5ae50b82a698ebb77", + "ed2b2a27fff7411b8df4b88a78ed224b", + "b9cdbbf2a24341bcb8f83b1ced79aad3", + "55765c91f69a434bbeee0ec4c958ec4a", + "124c93b98e4849d5a6ffae08778c30af", + "90396fc7a5304bf5b9e40079bf01fcca", + "a23c1206f8bb4e8d94e7124c8876aabb", + "e421f3c846f84af59fec6d0df18165ca", + "82752376f32b43068618d4c6e171b4b6", + "d15b58a1ebdc4a99ae5f17dadd2b049b", + "48409e890cc043989cba4e0cde911244", + "b8c4dee5841246deb177038bd2a6b164", + "ed88ac6ac20f4abea6b1a6fafe431278", + "782b9b92a8634fe3bb1a6b5275f19cff" + ] + }, + "id": "QNmSMvN0VYx9", + "outputId": "53ec8ab0-0b54-4370-aeaa-d37f28d33240" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "832da29a59414c4e96a6a84209b63b02", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0/139 [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
patient_iddrugNameconditionreviewratingdateusefulCountreview_length
095260Guanfacineadhd\"My son is halfway through his fourth week of ...8.0April 27, 2010192141
192703Lybrelbirth control\"I used to take another oral contraceptive, wh...5.0December 14, 200917134
2138000Ortho Evrabirth control\"This is my first time using any form of birth...8.0November 3, 20151089
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n", + " " + ], + "text/plain": [ + " patient_id drugName ... usefulCount review_length\n", + "0 95260 Guanfacine ... 192 141\n", + "1 92703 Lybrel ... 17 134\n", + "2 138000 Ortho Evra ... 10 89\n", + "\n", + "[3 rows x 8 columns]" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "train_df = drug_dataset[\"train\"][:]" + ], + "metadata": { + "id": "dAwWHHIEFnxR" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "frequencies = (\n", + " train_df[\"condition\"]\n", + " .value_counts()\n", + " .to_frame()\n", + " .reset_index()\n", + " .rename(columns={\"index\": \"condition\", \"condition\": \"frequency\"})\n", + ")\n", + "frequencies.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "eX2UdorvGApl", + "outputId": "42e019b2-bf56-4519-ee54-7687c909d696" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
conditionfrequency
0birth control27655
1depression8023
2acne5209
3anxiety4991
4pain4744
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " condition frequency\n", + "0 birth control 27655\n", + "1 depression 8023\n", + "2 acne 5209\n", + "3 anxiety 4991\n", + "4 pain 4744" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "from datasets import Dataset\n", + "\n", + "freq_dataset = Dataset.from_pandas(frequencies)\n", + "freq_dataset" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Iu8Mq_3DHiFF", + "outputId": "4c07ad7d-66f0-4fc3-818b-724ec69eeee8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['condition', 'frequency'],\n", + " num_rows: 819\n", + "})" + ] + }, + "metadata": {}, + "execution_count": 38 } - } - } - }, - "cells": [ + ] + }, { "cell_type": "code", - "execution_count": 1, + "source": [ + "avrage_rating_df = train_df[[\"drugName\",\"rating\"]].groupby(\"drugName\").mean().reset_index()\n", + "avrage_rating_dataset = Dataset.from_pandas(avrage_rating_df)\n", + "avrage_rating_dataset" + ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "JPdOQa337CFz", - "outputId": "7218cee2-fca5-4bf5-a7da-77d15168dbd8" + "id": "yjbceKZAI2tP", + "outputId": "1be94323-ae5e-4665-c88b-7c8a270bbb09" }, + "execution_count": null, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting datasets\n", - " Downloading datasets-1.17.0-py3-none-any.whl (306 kB)\n", - "\u001b[?25l\r\u001b[K |█ | 10 kB 24.4 MB/s eta 0:00:01\r\u001b[K |██▏ | 20 kB 27.5 MB/s eta 0:00:01\r\u001b[K |███▏ | 30 kB 31.8 MB/s eta 0:00:01\r\u001b[K |████▎ | 40 kB 23.0 MB/s eta 0:00:01\r\u001b[K |█████▍ | 51 kB 9.2 MB/s eta 0:00:01\r\u001b[K |██████▍ | 61 kB 10.2 MB/s eta 0:00:01\r\u001b[K |███████▌ | 71 kB 8.1 MB/s eta 0:00:01\r\u001b[K |████████▋ | 81 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████▋ | 92 kB 8.9 MB/s eta 0:00:01\r\u001b[K |██████████▊ | 102 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████▊ | 112 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████▉ | 122 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████ | 133 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████ | 143 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████ | 153 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████▏ | 163 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████▏ | 174 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████▎ | 184 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 194 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████▍ | 204 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████▌ | 215 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████▌ | 225 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████▋ | 235 kB 8.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▊ | 245 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▊ | 256 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▉ | 266 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▉ | 276 kB 8.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████ | 286 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████ | 296 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 306 kB 8.0 MB/s \n", - "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.1.5)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.19.5)\n", - "Requirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n", - "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)\n", - "Collecting xxhash\n", - " Downloading xxhash-2.0.2-cp37-cp37m-manylinux2010_x86_64.whl (243 kB)\n", - "\u001b[K |████████████████████████████████| 243 kB 52.4 MB/s \n", - "\u001b[?25hRequirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n", - "Collecting fsspec[http]>=2021.05.0\n", - " Downloading fsspec-2021.11.1-py3-none-any.whl (132 kB)\n", - "\u001b[K |████████████████████████████████| 132 kB 48.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)\n", - "Requirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n", - "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.62.3)\n", - "Collecting aiohttp\n", - " Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n", - "\u001b[K |████████████████████████████████| 1.1 MB 46.6 MB/s \n", - "\u001b[?25hCollecting huggingface-hub<1.0.0,>=0.1.0\n", - " Downloading huggingface_hub-0.2.1-py3-none-any.whl (61 kB)\n", - "\u001b[K |████████████████████████████████| 61 kB 516 kB/s \n", - "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.8.2)\n", - "Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.13)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.4.0)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.10.0.2)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.6)\n", - "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n", - "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)\n", - "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.24.3)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2021.10.8)\n", - "Collecting frozenlist>=1.1.1\n", - " Downloading frozenlist-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (192 kB)\n", - "\u001b[K |████████████████████████████████| 192 kB 48.9 MB/s \n", - "\u001b[?25hCollecting multidict<7.0,>=4.5\n", - " Downloading multidict-5.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (160 kB)\n", - "\u001b[K |████████████████████████████████| 160 kB 55.9 MB/s \n", - "\u001b[?25hCollecting async-timeout<5.0,>=4.0.0a3\n", - " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", - "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.2.0)\n", - "Collecting yarl<2.0,>=1.0\n", - " Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n", - "\u001b[K |████████████████████████████████| 271 kB 56.3 MB/s \n", - "\u001b[?25hCollecting aiosignal>=1.1.2\n", - " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", - "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.8)\n", - "Collecting asynctest==0.13.0\n", - " Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n", - "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.6.0)\n", - "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n", - "Installing collected packages: multidict, frozenlist, yarl, asynctest, async-timeout, aiosignal, fsspec, aiohttp, xxhash, huggingface-hub, datasets\n", - "Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-1.17.0 frozenlist-1.2.0 fsspec-2021.11.1 huggingface-hub-0.2.1 multidict-5.2.0 xxhash-2.0.2 yarl-1.7.2\n" - ] + "output_type": "execute_result", + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['drugName', 'rating'],\n", + " num_rows: 3052\n", + "})" + ] + }, + "metadata": {}, + "execution_count": 62 } - ], - "source": [ - "!pip install datasets" ] }, { "cell_type": "code", "source": [ - "!pip install transformers" + "avrage_rating_df[avrage_rating_df[\"drugName\"].str.contains('OxyContin')]" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "base_uri": "https://localhost:8080/", + "height": 81 }, - "id": "d3q7HTmjM1XQ", - "outputId": "24c42fd7-681c-4665-c073-027eb81269f7" + "id": "RORsvSy0MXt5", + "outputId": "46fa288c-5c4e-4338-d887-74f4f4ee3010" }, - "execution_count": 2, + "execution_count": null, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting transformers\n", - " Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB)\n", - "\u001b[K |████████████████████████████████| 3.4 MB 6.8 MB/s \n", - "\u001b[?25hCollecting tokenizers<0.11,>=0.10.1\n", - " Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 45.7 MB/s \n", - "\u001b[?25hRequirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.2.1)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n", - "Collecting pyyaml>=5.1\n", - " Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n", - "\u001b[K |████████████████████████████████| 596 kB 72.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.4.0)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n", - "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.62.3)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.19.5)\n", - "Collecting sacremoses\n", - " Downloading sacremoses-0.0.46-py3-none-any.whl (895 kB)\n", - "\u001b[K |████████████████████████████████| 895 kB 60.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.8.2)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (3.10.0.2)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.6)\n", - "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.6.0)\n", - "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2021.10.8)\n", - "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n", - "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n", - "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)\n", - "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n", - "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.15.0)\n", - "Installing collected packages: pyyaml, tokenizers, sacremoses, transformers\n", - " Attempting uninstall: pyyaml\n", - " Found existing installation: PyYAML 3.13\n", - " Uninstalling PyYAML-3.13:\n", - " Successfully uninstalled PyYAML-3.13\n", - "Successfully installed pyyaml-6.0 sacremoses-0.0.46 tokenizers-0.10.3 transformers-4.15.0\n" - ] + "output_type": "execute_result", + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
drugNamerating
2060OxyContin8.586667
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " drugName rating\n", + "2060 OxyContin 8.586667" + ] + }, + "metadata": {}, + "execution_count": 70 } ] }, { "cell_type": "code", "source": [ - "!wget \"https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip\"" + "drug_dataset.reset_format()" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "lwino22W7fyT", - "outputId": "76d00137-ad25-4748-c7f5-40244220092f" + "id": "_edYqGulOFGW" }, - "execution_count": 3, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "--2021-12-26 14:04:06-- https://archive.ics.uci.edu/ml/machine-learning-databases/00462/drugsCom_raw.zip\n", - "Resolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.252\n", - "Connecting to archive.ics.uci.edu (archive.ics.uci.edu)|128.195.10.252|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 42989872 (41M) [application/x-httpd-php]\n", - "Saving to: ‘drugsCom_raw.zip’\n", - "\n", - "drugsCom_raw.zip 100%[===================>] 41.00M 89.9MB/s in 0.5s \n", - "\n", - "2021-12-26 14:04:07 (89.9 MB/s) - ‘drugsCom_raw.zip’ saved [42989872/42989872]\n", - "\n" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", "source": [ - "!unzip drugsCom_raw.zip" + "drug_dataset_clean = drug_dataset[\"train\"].train_test_split(train_size=0.8, seed=42)\n", + "drug_dataset_clean[\"validation\"] = drug_dataset_clean.pop(\"test\")\n", + "drug_dataset_clean[\"test\"] = drug_dataset[\"test\"]\n", + "drug_dataset_clean" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "l_-BJiC-7rQV", - "outputId": "bdab5aaf-b1b7-4ffa-9e8b-7eb3842c5072" + "id": "CXbbRHRhPfvD", + "outputId": "b2202b07-48c8-4893-cd65-600d43934b1f" }, - "execution_count": 4, + "execution_count": null, "outputs": [ { "output_type": "stream", - "name": "stdout", + "name": "stderr", "text": [ - "Archive: drugsCom_raw.zip\n", - " inflating: drugsComTest_raw.tsv \n", - " inflating: drugsComTrain_raw.tsv \n" + "Loading cached split indices for dataset at /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e/cache-182ef4736d384abd.arrow and /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e/cache-debcedfd6a32499a.arrow\n" ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", + " num_rows: 110811\n", + " })\n", + " validation: Dataset({\n", + " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", + " num_rows: 27703\n", + " })\n", + " test: Dataset({\n", + " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", + " num_rows: 46108\n", + " })\n", + "})" + ] + }, + "metadata": {}, + "execution_count": 81 } ] }, { "cell_type": "code", "source": [ - "from datasets import load_dataset\n", - "data_files = {\"train\": \"drugsComTrain_raw.tsv\", \"test\": \"drugsComTest_raw.tsv\"}\n", - "drug_dataset = load_dataset(\"csv\", data_files=data_files, delimiter=\"\\t\")" + "drug_dataset_clean.save_to_disk(\"drug_reviews\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 185, + "height": 81, "referenced_widgets": [ - "281593e9e8964ec0a32bef55b9deb148", - "5f0d72f242b44bc89754b704a522b08d", - "cae22167d54c49a4a8f9ff94e8dd01c4", - "424971c141754da8ac684fe5ce82ca4e", - "49bc85aa3b7c407b943bcea36d80d580", - "281c6fe1deef4d0d87b242c045070af3", - "97df58e119544ff9b3f78fe0ef94338c", - "b37b24bd9ea64a06868686c9510dc42e", - "e7c1ff922d8a48dcb55f0f052e0b2b86", - "0f9dc4643ba245119c2856250ee0d021", - "26a49bd5cf64468c8dd324e4d91287dd", - "8e47e67ad1ac4234aa5fdef4061a21e9", - "d6b655148d244d8a9039fd5673bf3337", - "46962589203c460ab7936b757440928d", - "392a948a2af5411db0ebb9075e7f6227", - "6a950ddd18d04ce19874f9c8749973d2", - "50893c85dc614ca0bb31b465e4a2def4", - "e00fb5fe5f3e4b8f8541282aba8b38c3", - "b1aaf6d7c49446879e1481415c61f9a8", - "41e05be2c32743d1978442a33a1cb8ba", - "c9ecc03947144c928e13644d62374390", - "06ad456028e1450b8bea25886dd71e5c", - "0af29e5651934d76baf4d1787889d198", - "0a30f87297ab4a7bb81ad180c0226454", - "494e72dc0a4d4abbbf758072d5667a8b", - "31b94f12c77c4dc381e2e65d7fa38fa2", - "7bf474933cdb47c296c3c98c4de8c19a", - "1575f71559f541d7afea3233e6fe4586", - "402e764b7a8749e79fe9e48f0bbb5763", - "f60f3d4dd5f94a2f84088f0c7ffb469c", - "3a8b24fa12dc4d6c80f681042a5cfc2a", - "77e9801f54db4a539402c1ddc08f577f", - "f462fd77083f4c8684043e47465b5867" + "b5a34cbe2cd942c3867f70b880eaec52", + "fdcd0dd845244debb0421558c01143c9", + "26eb07fddf604af2bf4b5e0f3b833d77", + "fe9b6afb8bcc4cf5bdf4ca9108516bb2", + "07978b9d0b344bebb081a684956e6c2e", + "afbd8f7e8bde4425b08646d36942595e", + "2b6348b223c04f97b36e9faa4561ad2b", + "3bf9dc19420441f195b7be335214c0e4", + "8a80497864db4d2fbebcdb6ef1495ad2", + "d485d46b139f47d3af6573ba69c5d6c3", + "f41cc85ff60f494da53efdcb6153be61", + "a8b786a21777429284684413989c84a7", + "8197d978edc44c2389a0dedac054f02e", + "abff636ad0c74ccfb5e8b626bb9e9822", + "10fe3c970f6a4e41a13126be433d019c", + "c26e75aaf473465fbb37238d52f6ec26", + "8ec16acfc7ad42be85907a2619aa335e", + "0191473df6664fe3bd25b5bcd9d1e2fa", + "27aa40c90b314b76ac60f9caaef3dc1d", + "cf85e34f2625470c902f5e8516d40fec", + "5af4486076e247eba2443641b19061f5", + "b87fcc903ced4949bfbac77b826bf47b" ] }, - "id": "MIhgoeS47yGQ", - "outputId": "1da4bd07-9f7d-4762-c471-bf21070d71db" + "id": "3Aer00sgSm5V", + "outputId": "de60d7c2-7da5-479b-f833-0d9d5dba6da9" }, - "execution_count": 5, + "execution_count": null, "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Using custom data configuration default-3761173c276c0a9a\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Downloading and preparing dataset csv/default to /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e...\n" - ] - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "281593e9e8964ec0a32bef55b9deb148", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - " 0%| | 0/2 [00:00 30)\n", - "print(drug_dataset.num_rows)" + "from datasets import load_dataset, load_from_disk, DownloadConfig\n", + "download_config = DownloadConfig(delete_extracted=True)\n", + "data_files = \"drug_reviews\"\n", + "pubmed_dataset = load_dataset(\"csv\", data_files=\"drugsComTrain_raw.tsv\", delimiter=\"\\t\", download_config=download_config)\n", + "# pubmed_dataset = load_dataset(\"dataset\", data_files=data_files, split=\"train\")\n", + "pubmed_dataset = pubmed_dataset[\"train\"]\n", + "pubmed_dataset" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 98, + "height": 173, "referenced_widgets": [ - "19972ac7a9524fae88bec023d5624134", - "bcb77810547a49d784d8c8987055857f", - "47ea578ad8e6466b9ed354e382d8c060", - "1a16cbf23aea441ba8afa1e1b40562bb", - "67b0d0d7407a450ea786fc685d3d20c9", - "b9afc23a3cc7467abb9863b0dde54f68", - "77e0cf1cc69843c98529fb2e90ac34d1", - "c38efe098a7346aa93ffa8e629f4de23", - "681b924c19944c3a948de88f05cb028b", - "860495d9fa444c7a8c4d411aad233865", - "5a15918a9e544ac586f1798602cfff8d", - "b2e8cd19f16843a6a85c23cc607bccf3", - "ec7b9dd6548e41b39a0cec8bee978ad6", - "45155064990a4a3ba6a357be809427d6", - "4aa1c46e33fd46dba8af7cf0bb5d3994", - "ff8a6ab06c2c4669ade31e65adf6a6f2", - "4ebacf83a7094147b16b8b4120e56e9d", - "5a2667b5f4424819b1e23889697d3299", - "cc022b7d144749de93fbfed810aa6c97", - "8c9ed4f2370d4deaaf5f54ede278f2f6", - "2587b7d3a95a49eb8ac86a2abaf38f7b", - "8ecd319a00bf472eb67b4f2065876f66" + "1b69b00ce99b4937af32d682c1ffa701", + "a24ca26315d848af8b66c16fc591e7da", + "51059fda818749ff853c38fb2c021e28", + "e308a8ea2801457c92d21c2b63b49bf7", + "7df1ae7227434c00ae86e5a1241e4cbf", + "dba4013c75f74b1a9b3e2358c11b6786", + "84f33c0796cd4c30a3cf2a74967569ef", + "0a369e5e7d714be4bb4eafa504abb1e4", + "5fd7c011012244f698d4c81a39c1869f", + "e4cf3f6f0a92448b887ca1105a993a92", + "3c2fe96a92ca4058903e1c4c94f2f262" ] }, - "id": "GS2CTTiZFyMh", - "outputId": "a3f6e7f1-c758-4553-bbf4-06db0fadf09d" + "id": "8v7AJ0rBk1nT", + "outputId": "3027b461-5990-4839-f4f7-852b3a9b7311" }, - "execution_count": 14, + "execution_count": null, "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Using custom data configuration default-fd5f2eb4422fa8dd\n", + "Reusing dataset csv (/root/.cache/huggingface/datasets/csv/default-fd5f2eb4422fa8dd/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e)\n" + ] + }, { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "19972ac7a9524fae88bec023d5624134", + "model_id": "1b69b00ce99b4937af32d682c1ffa701", "version_minor": 0, "version_major": 2 }, "text/plain": [ - " 0%| | 0/161 [00:00" ] }, "metadata": {}, - "execution_count": 22 + "execution_count": 117 } ] }, { "cell_type": "code", "source": [ - "tokenized_dataset = drug_dataset.map(tokenize_and_split, batched=True)" + "tokenized_dataset = pubmed_dataset_streamed.map(lambda x: tokenizer(x[\"review\"]), batched=True)\n", + "next(iter(tokenized_dataset))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 273, - "referenced_widgets": [ - "7a1af583d5744f94ba60a47865ad6c6a", - "30fb898b345d4b54a34df046b2485fed", - "a19dbd71fc444f3482f4f30fa70bb0b9", - "a29ff675c747452a988d6f2b7f395ab6", - "be34e5ec5ad5434383b2fe4934622433", - "e506a754207b44d0ab6dacba91eeb516", - "3093806fd7b8499383b2e3be3ab50df5", - "7c2b0441add44cc0aebb96ecbdfe15d1", - "c1e0c4f49fb846b7a5559516f0c7f4c6", - "168a6ecadd52454f837c6651b8854fef", - "32cd166f43da4b93a4f79a1b8c29952b" - ] + "height": 200 }, - "id": "kDkqT-jwVBHK", - "outputId": "60ed0e19-32ca-461b-ce58-84031233844e" + "id": "AxS8tNj_wnUV", + "outputId": "3c5bcd24-b262-4248-a239-67fe381dc431" }, - "execution_count": 23, + "execution_count": null, "outputs": [ - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7a1af583d5744f94ba60a47865ad6c6a", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - " 0%| | 0/139 [00:00\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtokenized_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrug_dataset\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenize_and_split\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, desc)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 511\u001b[0m )\n\u001b[0;32m--> 512\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 513\u001b[0m }\n\u001b[1;32m 514\u001b[0m )\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/dataset_dict.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 510\u001b[0m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 511\u001b[0m )\n\u001b[0;32m--> 512\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 513\u001b[0m }\n\u001b[1;32m 514\u001b[0m )\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)\u001b[0m\n\u001b[1;32m 2108\u001b[0m \u001b[0mnew_fingerprint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnew_fingerprint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2109\u001b[0m \u001b[0mdisable_tqdm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdisable_tqdm\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2110\u001b[0;31m \u001b[0mdesc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdesc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2111\u001b[0m )\n\u001b[1;32m 2112\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m\"Dataset\"\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"self\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;31m# apply actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 518\u001b[0;31m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"DatasetDict\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 519\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 520\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdataset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 483\u001b[0m }\n\u001b[1;32m 484\u001b[0m \u001b[0;31m# apply actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 485\u001b[0;31m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"DatasetDict\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 486\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Dataset\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[0;31m# re-apply format to the output\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 409\u001b[0m \u001b[0;31m# Call actual function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 410\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 411\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 412\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 413\u001b[0m \u001b[0;31m# Update fingerprint of in-place transforms + update in-place history of transforms\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m_map_single\u001b[0;34m(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)\u001b[0m\n\u001b[1;32m 2484\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2485\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2486\u001b[0;31m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2487\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mupdate_data\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwriter\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2488\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfinalize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# close_stream=bool(buf_writer is None)) # We only close if we are writing in a file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py\u001b[0m in \u001b[0;36mwrite_batch\u001b[0;34m(self, batch_examples, writer_batch_size)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[0mtyped_sequence\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mOptimizedTypedSequence\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_examples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtry_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol_try_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcol\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 457\u001b[0m \u001b[0mtyped_sequence_examples\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtyped_sequence\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 458\u001b[0;31m \u001b[0mpa_table\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pydict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtyped_sequence_examples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 459\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter_batch_size\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.from_pydict\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.from_arrays\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.Table.validate\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi\u001b[0m in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mArrowInvalid\u001b[0m: Column 1 named condition expected length 1463 but got length 1000" + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtokenized_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpubmed_dataset_streamed\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"review\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenized_dataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: 'IterableDataset' object is not an iterator" ] } ] @@ -18211,1580 +24964,1235 @@ { "cell_type": "code", "source": [ - "tokenized_dataset = drug_dataset.map(\n", - " tokenize_and_split, batched=True, remove_columns=drug_dataset[\"train\"].column_names\n", - ")" + "shuffled_dataset = pubmed_dataset_streamed.shuffle(buffer_size=1000,seed=42)" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 81, - "referenced_widgets": [ - "832da29a59414c4e96a6a84209b63b02", - "b4fae8961b334965b4c498ebac76b45e", - "3a07c7f3b06f42028bb9537332b03260", - "16630bd3a3b0407e8745e8bbfcf674d1", - "e847d3429fa44a81b15ad04c357f84a4", - "946270bdde754cbd93bbe0c69356b22e", - "c697a08fd94e44628f2d953e15464949", - "cb73171a78514f029bb81f1bc62f9e3b", - "ff8de08b534d4eb5ae50b82a698ebb77", - "ed2b2a27fff7411b8df4b88a78ed224b", - "b9cdbbf2a24341bcb8f83b1ced79aad3", - "55765c91f69a434bbeee0ec4c958ec4a", - "124c93b98e4849d5a6ffae08778c30af", - "90396fc7a5304bf5b9e40079bf01fcca", - "a23c1206f8bb4e8d94e7124c8876aabb", - "e421f3c846f84af59fec6d0df18165ca", - "82752376f32b43068618d4c6e171b4b6", - "d15b58a1ebdc4a99ae5f17dadd2b049b", - "48409e890cc043989cba4e0cde911244", - "b8c4dee5841246deb177038bd2a6b164", - "ed88ac6ac20f4abea6b1a6fafe431278", - "782b9b92a8634fe3bb1a6b5275f19cff" - ] - }, - "id": "QNmSMvN0VYx9", - "outputId": "53ec8ab0-0b54-4370-aeaa-d37f28d33240" + "id": "Zqe95BHwxXvy" }, - "execution_count": 24, - "outputs": [ - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "832da29a59414c4e96a6a84209b63b02", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - " 0%| | 0/139 [00:00\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
patient_iddrugNameconditionreviewratingdateusefulCountreview_length
095260Guanfacineadhd\"My son is halfway through his fourth week of ...8.0April 27, 2010192141
192703Lybrelbirth control\"I used to take another oral contraceptive, wh...5.0December 14, 200917134
2138000Ortho Evrabirth control\"This is my first time using any form of birth...8.0November 3, 20151089
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - " \n", - " " - ], "text/plain": [ - " patient_id drugName ... usefulCount review_length\n", - "0 95260 Guanfacine ... 192 141\n", - "1 92703 Lybrel ... 17 134\n", - "2 138000 Ortho Evra ... 10 89\n", - "\n", - "[3 rows x 8 columns]" + "[]" ] }, "metadata": {}, - "execution_count": 29 + "execution_count": 151 } ] }, { "cell_type": "code", "source": [ - "train_df = drug_dataset[\"train\"][:]" + "" ], "metadata": { - "id": "dAwWHHIEFnxR" + "id": "yxYkiOGVNzAj" }, - "execution_count": 31, + "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ - "frequencies = (\n", - " train_df[\"condition\"]\n", - " .value_counts()\n", - " .to_frame()\n", - " .reset_index()\n", - " .rename(columns={\"index\": \"condition\", \"condition\": \"frequency\"})\n", - ")\n", - "frequencies.head()" + "from datasets import load_dataset\n", + "sv_dataset = load_dataset(\"oscar\", \"unshuffled_deduplicated_sv\", streaming=True)\n", + "sv_dataset = sv_dataset[\"train\"]\n", + "next(iter(sv_dataset))" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 + "base_uri": "https://localhost:8080/" }, - "id": "eX2UdorvGApl", - "outputId": "42e019b2-bf56-4519-ee54-7687c909d696" + "id": "RA3SWb0Y3V0S", + "outputId": "823dd2c2-1025-4bf8-ee09-40681e3d73b7" }, - "execution_count": 37, + "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
conditionfrequency
0birth control27655
1depression8023
2acne5209
3anxiety4991
4pain4744
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ], "text/plain": [ - " condition frequency\n", - "0 birth control 27655\n", - "1 depression 8023\n", - "2 acne 5209\n", - "3 anxiety 4991\n", - "4 pain 4744" + "{'id': 0,\n", + " 'text': '1783 är ett viktigt årtal i den nya tidens historia. Det året slöts en fred i Paris och därmed blev de 13 brittiska kolonierna i Nordamerika självständiga, och landet USA bildades.\\nDet fanns många orsaker bakom koloniernas revolt mot England, bland annat ekonomiska orsaker. I England menade man att kolonierna enbart var till för moderlandets bästa. De skulle vara en marknad för brittiska tillverkare och att råvarorna skulle göra England rikt.\\nParlamentet (riksdagen) i London utfärdade en mängd lagar för att kontrollera handeln med kolonierna, allt till Englands fördel. Irritationen ökade då regeringen införde vissa stämpelavgifter och skyddstullar på brittiska varor bland annat te.\\nSpänningen ökade ytterligare 1763 då regeringen förbjöd nybyggarna att slå sig ned väster om bergskedjan Appalacherna. Avsikten var att hindra indianska oroligheter. Protester och uppror blev följden. Kolonisterna vägrade att acceptera tullar, skatter och stämpelavgifter eftersom de inte fick skicka representanter till det engelska parlamentet.\\n”Bostonmassakern” började med ett gräl mellan brittiska soldater och kolonister utanför tullhuset i Boston och slutade med att fem kolonister sköts till döds.\\n1773 inträffade det berömda ”Boston Tea Party”. Kolonister utklädda till indianer klättrade upp på tre brittiska skepp och kastade te för 25 000 pund i vattnet. Brittiska parlamentet svarade med att stänga Bostons hamn.\\nDe första skotten föll i Lexington i april 1775 och det blev upptakten till frihetskriget. Kolonisterna organiserade en arme som leddes av slavägaren George Washington. England satte in 20 000 tyska legosoldater i kriget.\\nDen 4 juli 1776 utfärdades den berömda oavhängighetsförklaringen i Philadelphia. Den mest berömda satsen i förklaringen är den att alla människor skapats lika och har samma grundläggande rättigheter, bl.a. rätt till liv, frihet och strävan efter lycka. Sedan dess har den 4 juli varit USA: s nationaldag.\\nEn av orsakerna till att kolonierna blev fria var att man fick hjälp av Frankrike och 1781 tvingades engelsmännen att kapitulera. Vid freden i Paris erkände England de 13 koloniernas självständighet.1789 skapades författningen, världens äldsta grundlag. Den 30 april 1789 installerades George Washington som USA:s förste president.\\nSymbolen för USA var flaggan som kallas för ”Stars and Stripes”. De 13 ursprungliga staterna var markerade i flaggan med 13 stjärnor i en ring och 13 ränder, omväxlande röda och vita. Det översta och understa är röda. När antalet delstater växte ökade också antalet stjärnor i flaggan. Antalet röda och vita ränder behölls oförändrat.\\n1. Beskriv några orsaker till koloniernas revolt mot England. 2. Beskriv händelserna vid Bostonmassakern.\\n7. Begreppen och de svåra orden nedan. Välj ut de tio svåraste orden. Gör ett bildspel med dessa.Visa din lärare eller förhör en kompis när du är klar.\\nrepublik, monarki, tull, skatt, avgift, stämpelavgift, parlament, grundlag, författning, politik, bojkott,\\nSkriv en sammanhållen text med egna ord. Använd gärna fler källor än minikursen. (ex youtube-filmer, so-rummet, ne.se mm.)'}" ] }, "metadata": {}, - "execution_count": 37 + "execution_count": 6 } ] }, { "cell_type": "code", "source": [ - "from datasets import Dataset\n", + "from transformers import AutoTokenizer\n", "\n", - "freq_dataset = Dataset.from_pandas(frequencies)\n", - "freq_dataset" + "tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased\")" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "3d2ac27a118c4b2891d29c06d2a60bf0", + "d90778ac57084654af7a6acee0749295", + "847821e787f749e997c484f9bcadacfb", + "2ac79de4e2eb41b285522fe8bb0cfdee", + "549ddc7c442a4ff89f11b9c109ff818b", + "383801eb00714653ae046c928465f1c1", + "6f233114ab3b40bbb8f1ae61da5ac46e", + "04cdc3cfebc6479395d4426cdaa7f9d6", + "0206456f256f44f2bbb7464a52735c1b", + "9fee345a2c814a3794124a4fbc3e206b", + "05ffc38ad3e0487dbe5998d299e73510", + "e13ead5e69624eaf9cfa1a377865a8f0", + "0738ee5cd823423aba97ff2974cd793d", + "5f2ab166587f45669f8f0d28d4754edf", + "fb7f9fdc0c15400dae5ecfb4c4d805d5", + "3fdff6191a5d486ca4b808c8d8182215", + "9a2fd4424aa74613893712a8f5da1bd3", + "9ce05e0122674d7392d72c60e18e1a07", + "80087343733f49ebb305de4a9a35a645", + "937464a3bc4845e08aabaac63b610a7f", + "4880e915416c4ceaa21c8d839c5b9f8d", + "527c8b3b5898466fa00c4d2cbe75621a", + "a7f388981edf491eab2f9febef0d611d", + "3206c67d0fd247ada65197c6846517b9", + "828f5f17f1864b86b430dec18bc216b8", + "9c8054c5ad254e65b4a5001816fdc679", + "9433ee39e42845e1987102c5272ec32a", + "388241b347dc4d1882dc8021b96e21f7", + "615f248740754e2ebf4ab017b5a996f1", + "1fc6bf8161aa4b8d96a57116c26b82d3", + "08e0c1a591a04e5d86c3029ac023fba7", + "4933a0cbe3334c149b9ba74ecf243919", + "67403a0ed39747b58b01673cd16da769", + "a26672d864ad44d8a7c5156e20b831cc", + "bfd843e8ce5940bb8cbc66d3fb5f66a1", + "4a69b9392a544907ae57f026a9d6f751", + "70c2ffddfede4d5986aa8df22e2fd2c9", + "9ac84f0167ad4906850ecd800beacf70", + "cfd83fb2e4bb44a08b6fc19d9fbefe12", + "8183ce1ea31e4ec2a9ace1329233d4b9", + "18c4994acc054edeacdc06aea7b034c4", + "5d7a6cc44cf14e56bf6722b8f064b42e", + "0cbc0b2ce6354e3198af26012f85f1a6", + "29261a49ac814a24b16606528c316bb4" + ] }, - "id": "Iu8Mq_3DHiFF", - "outputId": "4c07ad7d-66f0-4fc3-818b-724ec69eeee8" + "id": "XT5LAOV1MLwv", + "outputId": "c095e654-38c3-47f9-838f-0fe4f6deaa54" }, - "execution_count": 38, + "execution_count": null, "outputs": [ { - "output_type": "execute_result", + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3d2ac27a118c4b2891d29c06d2a60bf0", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/28.0 [00:00\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
drugNamerating
2060OxyContin8.586667
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - " \n", - " " - ], - "text/plain": [ - " drugName rating\n", - "2060 OxyContin 8.586667" - ] - }, - "metadata": {}, - "execution_count": 70 - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", "source": [ - "drug_dataset.reset_format()" + "sv_dataset = load_dataset(\"oscar\", \"unshuffled_deduplicated_sv\", streaming=True)\n", + "sv_dataset = sv_dataset[\"train\"]" ], "metadata": { - "id": "_edYqGulOFGW" + "id": "NjsD86hQPGVU" }, - "execution_count": 73, + "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ - "drug_dataset_clean = drug_dataset[\"train\"].train_test_split(train_size=0.8, seed=42)\n", - "drug_dataset_clean[\"validation\"] = drug_dataset_clean.pop(\"test\")\n", - "drug_dataset_clean[\"test\"] = drug_dataset[\"test\"]\n", - "drug_dataset_clean" + "de_dataset = load_dataset(\"oscar\", \"unshuffled_deduplicated_de\", streaming=True)\n", + "de_dataset = de_dataset[\"train\"]\n", + "next(iter(de_dataset))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "CXbbRHRhPfvD", - "outputId": "b2202b07-48c8-4893-cd65-600d43934b1f" + "id": "JiJIR923OY89", + "outputId": "4dd44e3e-4f3e-44a4-8b1e-8a09f005c99a" }, - "execution_count": 81, + "execution_count": null, "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Loading cached split indices for dataset at /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e/cache-182ef4736d384abd.arrow and /root/.cache/huggingface/datasets/csv/default-3761173c276c0a9a/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e/cache-debcedfd6a32499a.arrow\n" - ] - }, { "output_type": "execute_result", "data": { "text/plain": [ - "DatasetDict({\n", - " train: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 110811\n", - " })\n", - " validation: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 27703\n", - " })\n", - " test: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 46108\n", - " })\n", - "})" + "{'id': 0,\n", + " 'text': 'Dosierförderbänder Getriebe Entwässerungssiebmaschine USE 1400 x 3500 mm Eimerkettenbagger Entstaubungsanlage'}" ] }, "metadata": {}, - "execution_count": 81 + "execution_count": 13 } ] }, { "cell_type": "code", "source": [ - "drug_dataset_clean.save_to_disk(\"drug_reviews\")" + "zh_dataset = load_dataset(\"oscar\", \"unshuffled_deduplicated_zh\", streaming=True)\n", + "zh_dataset = zh_dataset[\"train\"]\n", + "next(iter(zh_dataset))" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 137, - "referenced_widgets": [ - "b5a34cbe2cd942c3867f70b880eaec52", - "fdcd0dd845244debb0421558c01143c9", - "26eb07fddf604af2bf4b5e0f3b833d77", - "fe9b6afb8bcc4cf5bdf4ca9108516bb2", - "07978b9d0b344bebb081a684956e6c2e", - "afbd8f7e8bde4425b08646d36942595e", - "2b6348b223c04f97b36e9faa4561ad2b", - "3bf9dc19420441f195b7be335214c0e4", - "8a80497864db4d2fbebcdb6ef1495ad2", - "d485d46b139f47d3af6573ba69c5d6c3", - "f41cc85ff60f494da53efdcb6153be61", - "a8b786a21777429284684413989c84a7", - "8197d978edc44c2389a0dedac054f02e", - "abff636ad0c74ccfb5e8b626bb9e9822", - "10fe3c970f6a4e41a13126be433d019c", - "c26e75aaf473465fbb37238d52f6ec26", - "8ec16acfc7ad42be85907a2619aa335e", - "0191473df6664fe3bd25b5bcd9d1e2fa", - "27aa40c90b314b76ac60f9caaef3dc1d", - "cf85e34f2625470c902f5e8516d40fec", - "5af4486076e247eba2443641b19061f5", - "b87fcc903ced4949bfbac77b826bf47b" - ] + "base_uri": "https://localhost:8080/" }, - "id": "3Aer00sgSm5V", - "outputId": "de60d7c2-7da5-479b-f833-0d9d5dba6da9" + "id": "r8YukrJqPkfR", + "outputId": "f0716484-ec80-414b-d5a9-f71247972d12" }, - "execution_count": 82, + "execution_count": null, "outputs": [ { - "output_type": "display_data", + "output_type": "execute_result", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b5a34cbe2cd942c3867f70b880eaec52", - "version_minor": 0, - "version_major": 2 - }, "text/plain": [ - "Flattening the indices: 0%| | 0/111 [00:00 rate_limit and len(all_issues) < num_issues:\n", + " all_issues.extend(batch)\n", + " batch = [] # Flush batch for next time period\n", + " print(f\"Reached GitHub rate limit. Sleeping for one hour ...\")\n", + " time.sleep(60 * 60 + 1)\n", + "\n", + " all_issues.extend(batch)\n", + " df = pd.DataFrame.from_records(all_issues)\n", + " df.to_json(f\"{issues_path}/{repo}-issues.jsonl\", orient=\"records\", lines=True)\n", + " print(\n", + " f\"Downloaded all the issues for {repo}! Dataset stored at {issues_path}/{repo}-issues.jsonl\"\n", + " )\n" + ], + "metadata": { + "id": "4NSYVTaZiXs-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "fetch_issues()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 66, + "referenced_widgets": [ + "1abf35d7e3f84665be946d3821684528", + "d48d4dae51db421d804cb579063c8049", + "1ea6e079d84446ef800bb11d1216ec15", + "1df3b19b5e4a4ca893d4984097e36d33", + "c853c3926d02463a85c74d6913ed7338", + "16c862053a824d3c87f5171a3bafc0ef", + "ef5483a5ab3c428996176b2fe48a7ab9", + "e2d31c986e5b4be88c655cebaf359872", + "92e840b0e057400ea43ae23dadb7e5d8", + "e57aaffa10c445ae99238b0d8a253f4f", + "cefe388fbd784838a975e7dda1984c94" ] }, - "id": "oDnY6TawT6W-", - "outputId": "5131b939-5c7e-4b0e-b705-f2cdbdb89e21" + "id": "eE9KLjNAkYn3", + "outputId": "472503dc-6cd1-4eac-b05f-cec245c1648d" }, - "execution_count": 86, + "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9298b0d5f8f468492885c1bf0ed223d", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Creating json from Arrow format: 0%| | 0/12 [00:00\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
urlrepository_urllabels_urlcomments_urlevents_urlhtml_urlidnode_idnumbertitleuserlabelsstatelockedassigneeassigneesmilestonecommentscreated_atupdated_atclosed_atauthor_associationactive_lock_reasondraftpull_requestbodyreactionstimeline_urlperformed_via_github_appis_pull_request
0https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datasetshttps://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://github.com/huggingface/datasets/pull/34871089209031PR_kwDODunzps4wTVeN3487Update ADD_NEW_DATASET.md{'login': 'apergo-ai', 'id': 68908804, 'node_i...[]closedFalseNone[]None02021-12-27 12:24:512021-12-27 15:00:452021-12-27 15:00:45CONTRIBUTORNoneFalse{'url': 'https://api.github.com/repos/huggingf...fixed make style prompt for Windows Terminal{'url': 'https://api.github.com/repos/huggingf...https://api.github.com/repos/huggingface/datas...NoneTrue
1https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datasetshttps://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://github.com/huggingface/datasets/pull/34861089171551PR_kwDODunzps4wTNd13486Fix weird spacing in ManualDownloadError message{'login': 'bryant1410', 'id': 3905501, 'node_i...[]openFalseNone[]None02021-12-27 11:20:362021-12-27 11:20:36NaTNONENoneFalse{'url': 'https://api.github.com/repos/huggingf...`textwrap.dedent` works based on the spaces at...{'url': 'https://api.github.com/repos/huggingf...https://api.github.com/repos/huggingface/datas...NoneTrue
2https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datasetshttps://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://api.github.com/repos/huggingface/datas...https://github.com/huggingface/datasets/issues...1089027581I_kwDODunzps5A6T393485skip columns which cannot set to specific form...{'login': 'tshu-w', 'id': 13161779, 'node_id':...[{'id': 1935892871, 'node_id': 'MDU6TGFiZWwxOT...closedFalseNone[]None22021-12-27 07:19:552021-12-27 09:07:072021-12-27 09:07:07NONENoneNoneNone**Is your feature request related to a problem...{'url': 'https://api.github.com/repos/huggingf...https://api.github.com/repos/huggingface/datas...NoneFalse
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + " \n", + " " + ], "text/plain": [ - "DatasetDict({\n", - " train: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 110811\n", - " })\n", - " validation: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 27703\n", - " })\n", - " test: Dataset({\n", - " features: ['patient_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n", - " num_rows: 46108\n", - " })\n", - "})" + " url ... is_pull_request\n", + "0 https://api.github.com/repos/huggingface/datas... ... True\n", + "1 https://api.github.com/repos/huggingface/datas... ... True\n", + "2 https://api.github.com/repos/huggingface/datas... ... False\n", + "\n", + "[3 rows x 30 columns]" ] }, "metadata": {}, - "execution_count": 89 + "execution_count": 35 } ] }, { - "cell_type": "markdown", + "cell_type": "code", "source": [ - "# Big data" + "from datetime import datetime\n", + "def duration_hrs(row):\n", + " created = row[\"created_at\"]\n", + " closed = row[\"closed_at\"]\n", + " delta = closed-created\n", + " hours = delta.total_seconds()/(60*60)\n", + " return hours" ], "metadata": { - "id": "4ZXHOqwlk2w5" - } + "id": "V8_H9966mkTK" + }, + "execution_count": null, + "outputs": [] }, { "cell_type": "code", "source": [ - "!pip install zstandard" + "issues_df[\"duration\"] = issues_df.apply(lambda row: duration_hrs(row), axis=1)" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "u7O68gmyVX37", - "outputId": "8428f6f1-3f45-4e35-90a4-9426501aec43" + "id": "PKU947xaqlki" }, - "execution_count": 90, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting zstandard\n", - " Downloading zstandard-0.16.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB)\n", - "\u001b[K |████████████████████████████████| 2.9 MB 7.7 MB/s \n", - "\u001b[?25hInstalling collected packages: zstandard\n", - "Successfully installed zstandard-0.16.0\n" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", "source": [ - "from datasets import load_dataset, load_from_disk, DownloadConfig\n", - "download_config = DownloadConfig(delete_extracted=True)\n", - "data_files = \"drug_reviews\"\n", - "pubmed_dataset = load_dataset(\"csv\", data_files=\"drugsComTrain_raw.tsv\", delimiter=\"\\t\", download_config=download_config)\n", - "# pubmed_dataset = load_dataset(\"dataset\", data_files=data_files, split=\"train\")\n", - "pubmed_dataset = pubmed_dataset[\"train\"]\n", - "pubmed_dataset" + "issues_df[issues_df[\"duration\"].notna()][\"duration\"].mean()" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 173, - "referenced_widgets": [ - "1b69b00ce99b4937af32d682c1ffa701", - "a24ca26315d848af8b66c16fc591e7da", - "51059fda818749ff853c38fb2c021e28", - "e308a8ea2801457c92d21c2b63b49bf7", - "7df1ae7227434c00ae86e5a1241e4cbf", - "dba4013c75f74b1a9b3e2358c11b6786", - "84f33c0796cd4c30a3cf2a74967569ef", - "0a369e5e7d714be4bb4eafa504abb1e4", - "5fd7c011012244f698d4c81a39c1869f", - "e4cf3f6f0a92448b887ca1105a993a92", - "3c2fe96a92ca4058903e1c4c94f2f262" - ] + "base_uri": "https://localhost:8080/" }, - "id": "8v7AJ0rBk1nT", - "outputId": "3027b461-5990-4839-f4f7-852b3a9b7311" + "id": "EK8exlket49h", + "outputId": "fe9187fd-345d-461d-bc67-d40a64b8eecf" }, - "execution_count": 108, + "execution_count": null, "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Using custom data configuration default-fd5f2eb4422fa8dd\n", - "Reusing dataset csv (/root/.cache/huggingface/datasets/csv/default-fd5f2eb4422fa8dd/0.0.0/6b9057d9e23d9d8a2f05b985917a0da84d70c5dae3d22ddd8a3f22fb01c69d9e)\n" - ] - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1b69b00ce99b4937af32d682c1ffa701", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - " 0%| | 0/1 [00:00 self.dataset_tester.check_load_dataset(dataset_name, configs, is_local=True, use_local_dummy_data=True)\\r\\n\\r\\ntests/test_dataset_common.py:234: \\r\\n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \\r\\ntests/test_dataset_common.py:187: in check_load_dataset\\r\\n self.parent.assertTrue(len(dataset[split]) > 0)\\r\\nE AssertionError: False is not true\\r\\n```\\r\\nWhen I try loading dataset on local machine it works fine. Any suggestions on how can I avoid this error?\",\n", + " 'Thanks for the help, @albertvillanova! All tests are passing now.']" ] }, "metadata": {}, - "execution_count": 116 + "execution_count": 72 } ] }, { "cell_type": "code", "source": [ - "from transformers import AutoTokenizer\n", - "\n", - "tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased\")" + "issues_with_comments_dataset = issues_dataset.map(\n", + " lambda x: {\"comments\": get_comments(x[\"number\"])}\n", + ")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 162, + "height": 49, "referenced_widgets": [ - "a48ce4f2e90447a8bb4baadbd4bea86a", - "a206cae3de0949fa9bee7f134230bdf6", - "9cf97e9dc35d493eb155c4589d426a38", - "50808a803093414786e5f4d2fc3aa53d", - "b6a4bf539353489cae6d4f3680b0bd61", - "f3a7b3019c174ecc9f3659d63d02a2ad", - "e37779a755b54e21a8dbd9e2a60a6951", - "69fa53e6221b43998f587586dee215c0", - "badb47900842420e8c475dd6e044e7cf", - "3c6aeb4bb17142a68c7235e96aa1abd9", - "da36a09037e9428a9a6670adde94b140", - "bc7bda046b5f4b1a8428a50805deed01", - "9ed51d276c4a43da9621af508a7c4c7e", - "118b0f07a1b34b6b98dcb4277a9a1264", - "5bc46272d4494004a64cc56824a2bf9b", - "93c712857ba74ad6b8e2e955faaa77e7", - "1d9f3099130c463abd93f73782b706fe", - "8db07a9a4b0a42008fcb146e1c8761e6", - "d7d9b1eba35e4b679e4dc0b9acc16b39", - "0964c3577a754b358d7b40e65b10124c", - "6f53d65eb9d943a5915bf011c0f6c890", - "08fb721cf4bf42f2b86a92f0dd643414", - "b525c936086c4e28aeaac97e74de39a5", - "7abf4668e2ba48bba925ffeedfec9d17", - "15097452273148f9ba21edff15cdc2de", - "db141d80b5c947cbbb5718929e60fa43", - "0c9885df82f34d8d9a5f1271c8636822", - "0b1b4e0890714923be47df7f4ee3fec1", - "5e0d70c0fa7848459838dd253a626b86", - "0b4ea9898ff244e7bc51417733722a2b", - "e5ee580047ca4feb9357c51552f89d7a", - "a602cbb82b134f81979e0d4a39882ad1", - "df974b4cbcdc4962ac68883db9ac7044", - "131fbe115fcb4be5b237db3e2a9aac55", - "05e4c6cb66744fce8d5f9b751e0fb9c2", - "ecbdfd08a5cc4b499ebf7be0d578415c", - "174039ae3f1845068a6ee7cec31bea80", - "4c26ac871f3047e0bc8dc8679de5601c", - "7e89b799a7d8426ebb3308792f8f9583", - "5facfd55034a4db9beb4dd44534cb4f3", - "957b851d77314c5d84c3f6a71192a3fc", - "75fc83fe2b28412da944756b5457c828", - "b5989f99628d4cf48340f6c7576d40be", - "02cf3131555e4c87a95e41eb54d36baf" + "a4d3d0fa7f714e2d87a9f760ff3c5d9b", + "a129ce2bfa004224b58bb65349c4d437", + "0941d09fbad14fcca7e68a3f79411fbb", + "0c1735142887463b825f5a7f893b3ad3", + "54de99c728f244c6b3ab425a478a9007", + "bdfa6f473d1948e7aa2f234c4199e2d5", + "8b40c8cbf9704904abab534e46541402", + "be5e8a2338694af1b0032d9b03239441", + "0f9ac20005b743cea31c8a3f8dbf8a35", + "5aec9265276e47088fe5dd7afb362c91", + "21a5001315e8473e86b9edd2f6925b1e" ] }, - "id": "oLefyDxpv4lO", - "outputId": "809071bf-cb4d-4472-c9c0-0f1a7f52911f" + "id": "zIOx9i9A3uRy", + "outputId": "d7ffa78a-5d79-466e-9eec-040d34a08544" }, - "execution_count": 117, + "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a48ce4f2e90447a8bb4baadbd4bea86a", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/28.0 [00:00" + "15520904" ] }, "metadata": {}, - "execution_count": 117 + "execution_count": 74 } ] }, { "cell_type": "code", "source": [ - "tokenized_dataset = pubmed_dataset_streamed.map(lambda x: tokenizer(x[\"review\"]), batched=True)\n", - "next(iter(tokenized_dataset))" + "from huggingface_hub import list_datasets\n", + "all_datasets = list_datasets()\n", + "print(len(all_datasets))\n", + "print(all_datasets[0])" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 200 + "base_uri": "https://localhost:8080/" }, - "id": "AxS8tNj_wnUV", - "outputId": "3c5bcd24-b262-4248-a239-67fe381dc431" + "id": "z6yvIG6o7TCj", + "outputId": "bed38f65-9d98-41bb-8345-25f1980d0226" }, - "execution_count": 134, + "execution_count": null, "outputs": [ { - "output_type": "error", - "ename": "TypeError", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mtokenized_dataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpubmed_dataset_streamed\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtokenizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"review\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatched\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtokenized_dataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: 'IterableDataset' object is not an iterator" + "output_type": "stream", + "name": "stdout", + "text": [ + "2288\n", + "Dataset Name: 0n1xus/codexglue, Tags: []\n" ] } ] @@ -19833,105 +26239,150 @@ { "cell_type": "code", "source": [ - "shuffled_dataset = pubmed_dataset_streamed.shuffle(buffer_size=1000,seed=42)" + "from huggingface_hub import notebook_login\n", + "notebook_login()" ], "metadata": { - "id": "Zqe95BHwxXvy" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 499, + "referenced_widgets": [ + "e253562c40e84cd48a591ae8fbdd8882", + "359fee347b6b474c9c25bbfeed583e7e", + "90bd80166ee046a28408dcd6a180169e", + "966207503baa469ca8542121784d4c7b", + "5489866204e3458ba355fc92623b39f5", + "a8cceca9cd89483aa672c2e9f6f762ce", + "5c534ca7a343437393f5ec002e1440dd", + "cd731edd2721492287102934c07eaac7", + "d1848e6bd0c745e9bca74ed3e018d4fe", + "48f5dec69f044020ad043b38b9adea9c", + "546457186e5d4e3b99309970e3039d6d", + "cf693a04421c45ac98aea78755933005", + "f37a9d01303b4e028220184936610ddc", + "c41e4dddbc3d424ca37b33da33cf94a2", + "26c61dae39f44d459e650b591070071c", + "cf5a1cf028de4526b460b836fcbae866", + "ed2e5c8596f1494a843037a77422f296" + ] + }, + "id": "QKZqAOnj7or1", + "outputId": "679f9c6c-ac42-4bf9-9267-4b2ed7790c70" }, - "execution_count": 142, - "outputs": [] + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Login successful\n", + "Your token has been saved to /root/.huggingface/token\n", + "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n", + "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n", + "\n", + "git config --global credential.helper store\u001b[0m\n" + ] + } + ] }, { "cell_type": "code", "source": [ - "train_dataset = shuffled_dataset.skip(500)\n", - "validation_dataset = shuffled_dataset.take(500)" + "from huggingface_hub import create_repo\n", + "repo_url = create_repo(name=\"github-issues\", repo_type=\"dataset\")\n", + "repo_url" ], "metadata": { - "id": "zsGnBEWC1ZyZ" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "7jx2VHUH81S7", + "outputId": "59f92a76-dd7a-4ef3-a9a1-2d76ffda0cc9" }, - "execution_count": 143, - "outputs": [] + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'https://huggingface.co/datasets/SebastianS/github-issues'" + ] + }, + "metadata": {}, + "execution_count": 78 + } + ] }, { "cell_type": "code", "source": [ - "pubmed_dataset_streamed2 = load_dataset(\n", - " \"csv\", data_files=\"drugsComTest_raw.tsv\", split=\"train\", delimiter=\"\\t\", streaming=True\n", - ")\n", - "next(iter(pubmed_dataset_streamed2))" + "!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash\n", + "!sudo apt-get install git-lfs" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "_LZd827S2bA5", - "outputId": "f7333dfa-f5a3-46d6-961f-01046521af55" + "id": "4ul_ECsp-wkB", + "outputId": "f0b9d333-1fec-400e-998c-97ee18c6d3e3" }, - "execution_count": 149, + "execution_count": null, "outputs": [ { "output_type": "stream", - "name": "stderr", + "name": "stdout", "text": [ - "Using custom data configuration default-f7dc8c58638ca9ea\n" + "Detected operating system as Ubuntu/bionic.\n", + "Checking for curl...\n", + "Detected curl...\n", + "Checking for gpg...\n", + "Detected gpg...\n", + "Running apt-get update... done.\n", + "Installing apt-transport-https... done.\n", + "Installing /etc/apt/sources.list.d/github_git-lfs.list...done.\n", + "Importing packagecloud gpg key... done.\n", + "Running apt-get update... done.\n", + "\n", + "The repository is setup! You can now install packages.\n" ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'Unnamed: 0': 163740,\n", - " 'condition': 'Depression',\n", - " 'date': 'February 28, 2012',\n", - " 'drugName': 'Mirtazapine',\n", - " 'rating': 10.0,\n", - " 'review': '\"I've tried a few antidepressants over the years (citalopram, fluoxetine, amitriptyline), but none of those helped with my depression, insomnia & anxiety. My doctor suggested and changed me onto 45mg mirtazapine and this medicine has saved my life. Thankfully I have had no side effects especially the most common - weight gain, I've actually lost alot of weight. I still have suicidal thoughts but mirtazapine has saved me.\"',\n", - " 'usefulCount': 22}" - ] - }, - "metadata": {}, - "execution_count": 149 } ] }, { "cell_type": "code", "source": [ - "from itertools import islice\n", - "from datasets import interleave_datasets\n", - "\n", - "combined_dataset = interleave_datasets([pubmed_dataset_streamed, pubmed_dataset_streamed2])\n", - "list(islice(combined_dataset, 2))" + "from huggingface_hub import Repository\n", + "repo = Repository(local_dir=\"github-issues\", clone_from=repo_url)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "mfBA20l52e4G", - "outputId": "460b0692-1377-4cb4-fb1d-df1ae577dd08" + "id": "qiAZsD4D_jLy", + "outputId": "a2df6c1a-4363-45f9-80c2-393cd83f435e" }, - "execution_count": 151, + "execution_count": null, "outputs": [ { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[]" - ] - }, - "metadata": {}, - "execution_count": 151 + "output_type": "stream", + "name": "stderr", + "text": [ + "Cloning https://huggingface.co/datasets/SebastianS/github-issues into local empty directory.\n" + ] } ] }, { "cell_type": "code", "source": [ - "" + "!cp issues-datasets-with-comments.jsonl github-issues/" ], "metadata": { - "id": "yxYkiOGVNzAj" + "id": "RyCYaKiNACfJ" }, "execution_count": null, "outputs": [] @@ -19939,120 +26390,155 @@ { "cell_type": "code", "source": [ - "from datasets import load_dataset\n", - "sv_dataset = load_dataset(\"oscar\", \"unshuffled_deduplicated_sv\", streaming=True)\n", - "sv_dataset = sv_dataset[\"train\"]\n", - "next(iter(sv_dataset))" + "repo.lfs_track(\"*.jsonl\")" + ], + "metadata": { + "id": "zvelplR0AZol" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "repo.push_to_hub()" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "base_uri": "https://localhost:8080/", + "height": 165, + "referenced_widgets": [ + "8eaacdf4a63a455998f33052aaff3494", + "17b0494b35d943439e6cb0d9312ec97b", + "9ef4b8ca89d541c39befbd2ecd567cef", + "13704a202e774643beee0d7d5fbd9e5e", + "60f214d35a864ddf987527a9dbe18f0f", + "e47ced2ed6e54e48825394b93f4ef68d", + "a05e829e36d5429a8abac3c7a7f16e9a", + "9364020b88ac4629bba621cb423338bc", + "98bde718736f4f19a82042d5a9334f39", + "f2695d9b69054c7583e95dc532eea4da", + "cfe974f2625d4fe7b0d06b7f1065555c" + ] }, - "id": "RA3SWb0Y3V0S", - "outputId": "823dd2c2-1025-4bf8-ee09-40681e3d73b7" + "id": "EM5B6PG5BFEy", + "outputId": "31a44344-8424-416f-e231-3881b4680bfb" }, - "execution_count": 6, + "execution_count": null, "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8eaacdf4a63a455998f33052aaff3494", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + "Upload file issues-datasets-with-comments.jsonl: 0%| | 32.0k/14.8M [00:00 main\n", + "\n" + ] + }, { "output_type": "execute_result", "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, "text/plain": [ - "{'id': 0,\n", - " 'text': '1783 är ett viktigt årtal i den nya tidens historia. Det året slöts en fred i Paris och därmed blev de 13 brittiska kolonierna i Nordamerika självständiga, och landet USA bildades.\\nDet fanns många orsaker bakom koloniernas revolt mot England, bland annat ekonomiska orsaker. I England menade man att kolonierna enbart var till för moderlandets bästa. De skulle vara en marknad för brittiska tillverkare och att råvarorna skulle göra England rikt.\\nParlamentet (riksdagen) i London utfärdade en mängd lagar för att kontrollera handeln med kolonierna, allt till Englands fördel. Irritationen ökade då regeringen införde vissa stämpelavgifter och skyddstullar på brittiska varor bland annat te.\\nSpänningen ökade ytterligare 1763 då regeringen förbjöd nybyggarna att slå sig ned väster om bergskedjan Appalacherna. Avsikten var att hindra indianska oroligheter. Protester och uppror blev följden. Kolonisterna vägrade att acceptera tullar, skatter och stämpelavgifter eftersom de inte fick skicka representanter till det engelska parlamentet.\\n”Bostonmassakern” började med ett gräl mellan brittiska soldater och kolonister utanför tullhuset i Boston och slutade med att fem kolonister sköts till döds.\\n1773 inträffade det berömda ”Boston Tea Party”. Kolonister utklädda till indianer klättrade upp på tre brittiska skepp och kastade te för 25 000 pund i vattnet. Brittiska parlamentet svarade med att stänga Bostons hamn.\\nDe första skotten föll i Lexington i april 1775 och det blev upptakten till frihetskriget. Kolonisterna organiserade en arme som leddes av slavägaren George Washington. England satte in 20 000 tyska legosoldater i kriget.\\nDen 4 juli 1776 utfärdades den berömda oavhängighetsförklaringen i Philadelphia. Den mest berömda satsen i förklaringen är den att alla människor skapats lika och har samma grundläggande rättigheter, bl.a. rätt till liv, frihet och strävan efter lycka. Sedan dess har den 4 juli varit USA: s nationaldag.\\nEn av orsakerna till att kolonierna blev fria var att man fick hjälp av Frankrike och 1781 tvingades engelsmännen att kapitulera. Vid freden i Paris erkände England de 13 koloniernas självständighet.1789 skapades författningen, världens äldsta grundlag. Den 30 april 1789 installerades George Washington som USA:s förste president.\\nSymbolen för USA var flaggan som kallas för ”Stars and Stripes”. De 13 ursprungliga staterna var markerade i flaggan med 13 stjärnor i en ring och 13 ränder, omväxlande röda och vita. Det översta och understa är röda. När antalet delstater växte ökade också antalet stjärnor i flaggan. Antalet röda och vita ränder behölls oförändrat.\\n1. Beskriv några orsaker till koloniernas revolt mot England. 2. Beskriv händelserna vid Bostonmassakern.\\n7. Begreppen och de svåra orden nedan. Välj ut de tio svåraste orden. Gör ett bildspel med dessa.Visa din lärare eller förhör en kompis när du är klar.\\nrepublik, monarki, tull, skatt, avgift, stämpelavgift, parlament, grundlag, författning, politik, bojkott,\\nSkriv en sammanhållen text med egna ord. Använd gärna fler källor än minikursen. (ex youtube-filmer, so-rummet, ne.se mm.)'}" + "'https://huggingface.co/datasets/SebastianS/github-issues/commit/44b97cc6a8ee299421dc01cd60ef25fc7681a0a5'" ] }, "metadata": {}, - "execution_count": 6 + "execution_count": 86 } ] }, { "cell_type": "code", "source": [ - "from transformers import AutoTokenizer\n", - "\n", - "tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased\")" + "remote_dataset = load_dataset(\"SebastianS/github-issues\", split=\"train\")\n", + "remote_dataset" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 145, + "height": 255, "referenced_widgets": [ - "3d2ac27a118c4b2891d29c06d2a60bf0", - "d90778ac57084654af7a6acee0749295", - "847821e787f749e997c484f9bcadacfb", - "2ac79de4e2eb41b285522fe8bb0cfdee", - "549ddc7c442a4ff89f11b9c109ff818b", - "383801eb00714653ae046c928465f1c1", - "6f233114ab3b40bbb8f1ae61da5ac46e", - "04cdc3cfebc6479395d4426cdaa7f9d6", - "0206456f256f44f2bbb7464a52735c1b", - "9fee345a2c814a3794124a4fbc3e206b", - "05ffc38ad3e0487dbe5998d299e73510", - "e13ead5e69624eaf9cfa1a377865a8f0", - "0738ee5cd823423aba97ff2974cd793d", - "5f2ab166587f45669f8f0d28d4754edf", - "fb7f9fdc0c15400dae5ecfb4c4d805d5", - "3fdff6191a5d486ca4b808c8d8182215", - "9a2fd4424aa74613893712a8f5da1bd3", - "9ce05e0122674d7392d72c60e18e1a07", - "80087343733f49ebb305de4a9a35a645", - "937464a3bc4845e08aabaac63b610a7f", - "4880e915416c4ceaa21c8d839c5b9f8d", - "527c8b3b5898466fa00c4d2cbe75621a", - "a7f388981edf491eab2f9febef0d611d", - "3206c67d0fd247ada65197c6846517b9", - "828f5f17f1864b86b430dec18bc216b8", - "9c8054c5ad254e65b4a5001816fdc679", - "9433ee39e42845e1987102c5272ec32a", - "388241b347dc4d1882dc8021b96e21f7", - "615f248740754e2ebf4ab017b5a996f1", - "1fc6bf8161aa4b8d96a57116c26b82d3", - "08e0c1a591a04e5d86c3029ac023fba7", - "4933a0cbe3334c149b9ba74ecf243919", - "67403a0ed39747b58b01673cd16da769", - "a26672d864ad44d8a7c5156e20b831cc", - "bfd843e8ce5940bb8cbc66d3fb5f66a1", - "4a69b9392a544907ae57f026a9d6f751", - "70c2ffddfede4d5986aa8df22e2fd2c9", - "9ac84f0167ad4906850ecd800beacf70", - "cfd83fb2e4bb44a08b6fc19d9fbefe12", - "8183ce1ea31e4ec2a9ace1329233d4b9", - "18c4994acc054edeacdc06aea7b034c4", - "5d7a6cc44cf14e56bf6722b8f064b42e", - "0cbc0b2ce6354e3198af26012f85f1a6", - "29261a49ac814a24b16606528c316bb4" + "de526ae193aa4e67aad0679f27523c83", + "9f207a5a3cf74ec7bb18729eaac2772a", + "533dc41fa3294a098e3b94da3894c82a", + "3b7bf8411fa24d588e559ba64f122e21", + "f63dc4a807b340a7b597924c8377ebe9", + "c1f7893d9cf24a1498e496ee623e82f7", + "1568cb82bfad4661aa6a2d05afb5db9c", + "1365f8d36d694db8bf10ca6e47bc4101", + "c9d2f6fcc2fc4dbe9fd46ed01ff7978d", + "d690bf4d95a0499986580fb1a1c5ba8a", + "5bcb369fd8d044a4892fad64f8166293", + "0d8119b93e4044b0b98002bbf7cf446c", + "10326274ed4842f5adab0115f2c1b714", + "917b1a4021a84a8a9268849304c049f3", + "4092fd50fabf4ad9b8f246279f4db4e4", + "a4ef0b594210484cacb3ede355d87c34", + "b3030e8a84a34a71ac7f7bd11e2083e6", + "d000e81bd117442d9c61c52d0a26f442", + "5cf86e57351b4207b2f4d959a966be56", + "c7c64610818243e4a4c5105f1a418e4f", + "436ebd6f3ee6466fb952d52b3a901272", + "f2f0119990c04110b16d7803ec4c3568", + "310e6ac675254873b55a721662baadc3", + "43f36da19df047089c4279aedf2b93e8", + "53571869a5fe45a9b1472baeca1dc3fb", + "d6f7605516ea47af89d8de8a528889ea", + "37e3edd6dd354c358e781ccdd94b35d2", + "8a8138c4339e45bda0accc06a5f4d884", + "4ebdac01b4dc4ae383f5dca86b839c12", + "10fd5fe8bd9a4ec2922fe9530cdbfa97", + "86ea554a77644bf5bfb2f603b73f9a06", + "3c1feca13ed14aefa2cb1f0a027458e6", + "50ddfb7f10e547a2ac57c6e602534caa" ] }, - "id": "XT5LAOV1MLwv", - "outputId": "c095e654-38c3-47f9-838f-0fe4f6deaa54" + "id": "TH1RrW6TBJlF", + "outputId": "dc729dc2-a807-4daf-cacd-e9762bb4792d" }, - "execution_count": 8, + "execution_count": null, "outputs": [ { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3d2ac27a118c4b2891d29c06d2a60bf0", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/28.0 [00:00 main\n", + "\n" + ] + }, { "output_type": "execute_result", "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, "text/plain": [ - "[{'id': 0,\n", - " 'text': '时间可以被缩短,但过程不可以被省略,只有真正为社会创造价值的企业才能基业长青。大巧不工,重剑无锋,企业最终还是要用业绩和结果说话。一级a卡片在线观看通过产品打磨、团队搭建、市场营销、经营管理等过程,秉承着品质永恒,承诺不变的经营理念,鲁诺为全国众多行业用户及客户提供车辆财产及人身安全保障。业务涉及汽车信贷产品风控服务体系搭建与整合;汽车安全管理服务整体解决方案;安全管理设备研发及生产;信息平台研发及运维。\\n大道鲁商、千金一诺。鲁诺集��秉承着钻研、团结、求实、奉献的企业精神,践行着对社会负责、对客户负责、对合作伙伴负责的使命,创新发展,打造贴合用户需求的系列汽车风控产品,在汽车安全管理风控市场独领风骚。回顾一年,我们收获了更多真诚的合作伙伴、乐于奉献的企业员工、还有业界内专业用户广泛的赞誉。'},\n", - " {'id': 0,\n", - " 'text': '1783 är ett viktigt årtal i den nya tidens historia. Det året slöts en fred i Paris och därmed blev de 13 brittiska kolonierna i Nordamerika självständiga, och landet USA bildades.\\nDet fanns många orsaker bakom koloniernas revolt mot England, bland annat ekonomiska orsaker. I England menade man att kolonierna enbart var till för moderlandets bästa. De skulle vara en marknad för brittiska tillverkare och att råvarorna skulle göra England rikt.\\nParlamentet (riksdagen) i London utfärdade en mängd lagar för att kontrollera handeln med kolonierna, allt till Englands fördel. Irritationen ökade då regeringen införde vissa stämpelavgifter och skyddstullar på brittiska varor bland annat te.\\nSpänningen ökade ytterligare 1763 då regeringen förbjöd nybyggarna att slå sig ned väster om bergskedjan Appalacherna. Avsikten var att hindra indianska oroligheter. Protester och uppror blev följden. Kolonisterna vägrade att acceptera tullar, skatter och stämpelavgifter eftersom de inte fick skicka representanter till det engelska parlamentet.\\n”Bostonmassakern” började med ett gräl mellan brittiska soldater och kolonister utanför tullhuset i Boston och slutade med att fem kolonister sköts till döds.\\n1773 inträffade det berömda ”Boston Tea Party”. Kolonister utklädda till indianer klättrade upp på tre brittiska skepp och kastade te för 25 000 pund i vattnet. Brittiska parlamentet svarade med att stänga Bostons hamn.\\nDe första skotten föll i Lexington i april 1775 och det blev upptakten till frihetskriget. Kolonisterna organiserade en arme som leddes av slavägaren George Washington. England satte in 20 000 tyska legosoldater i kriget.\\nDen 4 juli 1776 utfärdades den berömda oavhängighetsförklaringen i Philadelphia. Den mest berömda satsen i förklaringen är den att alla människor skapats lika och har samma grundläggande rättigheter, bl.a. rätt till liv, frihet och strävan efter lycka. Sedan dess har den 4 juli varit USA: s nationaldag.\\nEn av orsakerna till att kolonierna blev fria var att man fick hjälp av Frankrike och 1781 tvingades engelsmännen att kapitulera. Vid freden i Paris erkände England de 13 koloniernas självständighet.1789 skapades författningen, världens äldsta grundlag. Den 30 april 1789 installerades George Washington som USA:s förste president.\\nSymbolen för USA var flaggan som kallas för ”Stars and Stripes”. De 13 ursprungliga staterna var markerade i flaggan med 13 stjärnor i en ring och 13 ränder, omväxlande röda och vita. Det översta och understa är röda. När antalet delstater växte ökade också antalet stjärnor i flaggan. Antalet röda och vita ränder behölls oförändrat.\\n1. Beskriv några orsaker till koloniernas revolt mot England. 2. Beskriv händelserna vid Bostonmassakern.\\n7. Begreppen och de svåra orden nedan. Välj ut de tio svåraste orden. Gör ett bildspel med dessa.Visa din lärare eller förhör en kompis när du är klar.\\nrepublik, monarki, tull, skatt, avgift, stämpelavgift, parlament, grundlag, författning, politik, bojkott,\\nSkriv en sammanhållen text med egna ord. Använd gärna fler källor än minikursen. (ex youtube-filmer, so-rummet, ne.se mm.)'},\n", - " {'id': 0,\n", - " 'text': 'Dosierförderbänder Getriebe Entwässerungssiebmaschine USE 1400 x 3500 mm Eimerkettenbagger Entstaubungsanlage'}]" + "'https://huggingface.co/datasets/SebastianS/github-issues/commit/bc18afe169e74ddd9c0ca76227d15bd61495b46b'" ] }, "metadata": {}, - "execution_count": 18 + "execution_count": 90 } ] }, { "cell_type": "markdown", "source": [ - "# creating datasets" + "# Semantic search" ], "metadata": { - "id": "KBqRM9_qdclU" + "id": "_uWS4VQzeCUv" } }, { "cell_type": "code", "source": [ - "GH_ACCESS_TOKEN = \"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\"\n", - "headers = {\"Authorization\": f\"token {GH_ACCESS_TOKEN}\"}" - ], - "metadata": { - "id": "E6lAOiWlQeHu" - }, - "execution_count": 3, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "!pip install requests transformers datasets" - ], - "metadata": { - "id": "jzjoqpsUgcbp" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "import requests\n", - "\n", - "url = \"https://api.github.com/repos/huggingface/datasets/issues?page=1&per_page=1\"\n", - "response = requests.get(url)" - ], - "metadata": { - "id": "zSTALglugeKv" - }, - "execution_count": 5, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "response.json()" + "!pip install transformers datasets" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "8OdQMsFGg9JZ", - "outputId": "247d0e4c-a030-4c29-c706-533efe474a2a" + "id": "T-dJ9wDFeJIl", + "outputId": "d4bc7253-3a98-4cb4-f644-1cb66dee0057" }, - "execution_count": 6, + "execution_count": null, "outputs": [ { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[{'active_lock_reason': None,\n", - " 'assignee': None,\n", - " 'assignees': [],\n", - " 'author_association': 'NONE',\n", - " 'body': \"`textwrap.dedent` works based on the spaces at the beginning. Before this change, there wasn't any space.\",\n", - " 'closed_at': None,\n", - " 'comments': 0,\n", - " 'comments_url': 'https://api.github.com/repos/huggingface/datasets/issues/3486/comments',\n", - " 'created_at': '2021-12-27T11:20:36Z',\n", - " 'draft': False,\n", - " 'events_url': 'https://api.github.com/repos/huggingface/datasets/issues/3486/events',\n", - " 'html_url': 'https://github.com/huggingface/datasets/pull/3486',\n", - " 'id': 1089171551,\n", - " 'labels': [],\n", - " 'labels_url': 'https://api.github.com/repos/huggingface/datasets/issues/3486/labels{/name}',\n", - " 'locked': False,\n", - " 'milestone': None,\n", - " 'node_id': 'PR_kwDODunzps4wTNd1',\n", - " 'number': 3486,\n", - " 'performed_via_github_app': None,\n", - " 'pull_request': {'diff_url': 'https://github.com/huggingface/datasets/pull/3486.diff',\n", - " 'html_url': 'https://github.com/huggingface/datasets/pull/3486',\n", - " 'merged_at': None,\n", - " 'patch_url': 'https://github.com/huggingface/datasets/pull/3486.patch',\n", - " 'url': 'https://api.github.com/repos/huggingface/datasets/pulls/3486'},\n", - " 'reactions': {'+1': 0,\n", - " '-1': 0,\n", - " 'confused': 0,\n", - " 'eyes': 0,\n", - " 'heart': 0,\n", - " 'hooray': 0,\n", - " 'laugh': 0,\n", - " 'rocket': 0,\n", - " 'total_count': 0,\n", - " 'url': 'https://api.github.com/repos/huggingface/datasets/issues/3486/reactions'},\n", - " 'repository_url': 'https://api.github.com/repos/huggingface/datasets',\n", - " 'state': 'open',\n", - " 'timeline_url': 'https://api.github.com/repos/huggingface/datasets/issues/3486/timeline',\n", - " 'title': 'Fix weird spacing in ManualDownloadError message',\n", - " 'updated_at': '2021-12-27T11:20:36Z',\n", - " 'url': 'https://api.github.com/repos/huggingface/datasets/issues/3486',\n", - " 'user': {'avatar_url': 'https://avatars.githubusercontent.com/u/3905501?v=4',\n", - " 'events_url': 'https://api.github.com/users/bryant1410/events{/privacy}',\n", - " 'followers_url': 'https://api.github.com/users/bryant1410/followers',\n", - " 'following_url': 'https://api.github.com/users/bryant1410/following{/other_user}',\n", - " 'gists_url': 'https://api.github.com/users/bryant1410/gists{/gist_id}',\n", - " 'gravatar_id': '',\n", - " 'html_url': 'https://github.com/bryant1410',\n", - " 'id': 3905501,\n", - " 'login': 'bryant1410',\n", - " 'node_id': 'MDQ6VXNlcjM5MDU1MDE=',\n", - " 'organizations_url': 'https://api.github.com/users/bryant1410/orgs',\n", - " 'received_events_url': 'https://api.github.com/users/bryant1410/received_events',\n", - " 'repos_url': 'https://api.github.com/users/bryant1410/repos',\n", - " 'site_admin': False,\n", - " 'starred_url': 'https://api.github.com/users/bryant1410/starred{/owner}{/repo}',\n", - " 'subscriptions_url': 'https://api.github.com/users/bryant1410/subscriptions',\n", - " 'type': 'User',\n", - " 'url': 'https://api.github.com/users/bryant1410'}}]" - ] - }, - "metadata": {}, - "execution_count": 6 + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting transformers\n", + " Downloading transformers-4.15.0-py3-none-any.whl (3.4 MB)\n", + "\u001b[K |███████���████████████████████████| 3.4 MB 4.3 MB/s \n", + "\u001b[?25hCollecting datasets\n", + " Downloading datasets-1.17.0-py3-none-any.whl (306 kB)\n", + "\u001b[K |████████████████████████████████| 306 kB 45.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.62.3)\n", + "Collecting pyyaml>=5.1\n", + " Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n", + "\u001b[K |████████████████████████████████| 596 kB 48.3 MB/s \n", + "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.8.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.4.0)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.19.5)\n", + "Collecting huggingface-hub<1.0,>=0.1.0\n", + " Downloading huggingface_hub-0.2.1-py3-none-any.whl (61 kB)\n", + "\u001b[K |████████████████████████████████| 61 kB 574 kB/s \n", + "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)\n", + "Collecting sacremoses\n", + " Downloading sacremoses-0.0.46-py3-none-any.whl (895 kB)\n", + "\u001b[K |████████████████████████████████| 895 kB 53.4 MB/s \n", + "\u001b[?25hCollecting tokenizers<0.11,>=0.10.1\n", + " Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n", + "\u001b[K |████████████████████████████████| 3.3 MB 34.9 MB/s \n", + "\u001b[?25hRequirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (3.10.0.2)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.6)\n", + "Collecting xxhash\n", + " Downloading xxhash-2.0.2-cp37-cp37m-manylinux2010_x86_64.whl (243 kB)\n", + "\u001b[K |████████████████████████████████| 243 kB 48.0 MB/s \n", + "\u001b[?25hCollecting fsspec[http]>=2021.05.0\n", + " Downloading fsspec-2021.11.1-py3-none-any.whl (132 kB)\n", + "\u001b[K |████████████████████████████████| 132 kB 53.4 MB/s \n", + "\u001b[?25hCollecting aiohttp\n", + " Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n", + "\u001b[K |████████████████████████████████| 1.1 MB 42.4 MB/s \n", + "\u001b[?25hRequirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)\n", + "Requirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)\n", + "Requirement already satisfied: pyarrow!=4.0.0,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (3.0.0)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.1.5)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2021.10.8)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n", + "Collecting yarl<2.0,>=1.0\n", + " Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)\n", + "\u001b[K |████████████████████████████████| 271 kB 50.3 MB/s \n", + "\u001b[?25hCollecting frozenlist>=1.1.1\n", + " Downloading frozenlist-1.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (192 kB)\n", + "\u001b[K |████████████████████████████████| 192 kB 45.6 MB/s \n", + "\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.2.0)\n", + "Collecting aiosignal>=1.1.2\n", + " Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)\n", + "Collecting asynctest==0.13.0\n", + " Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)\n", + "Collecting async-timeout<5.0,>=4.0.0a3\n", + " Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)\n", + "Collecting multidict<7.0,>=4.5\n", + " Downloading multidict-5.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (160 kB)\n", + "\u001b[K |████████████████████████████████| 160 kB 51.0 MB/s \n", + "\u001b[?25hRequirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.8)\n", + "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.6.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n", + "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)\n", + "Installing collected packages: multidict, frozenlist, yarl, asynctest, async-timeout, aiosignal, pyyaml, fsspec, aiohttp, xxhash, tokenizers, sacremoses, huggingface-hub, transformers, datasets\n", + " Attempting uninstall: pyyaml\n", + " Found existing installation: PyYAML 3.13\n", + " Uninstalling PyYAML-3.13:\n", + " Successfully uninstalled PyYAML-3.13\n", + "Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-1.17.0 frozenlist-1.2.0 fsspec-2021.11.1 huggingface-hub-0.2.1 multidict-5.2.0 pyyaml-6.0 sacremoses-0.0.46 tokenizers-0.10.3 transformers-4.15.0 xxhash-2.0.2 yarl-1.7.2\n" + ] } ] }, { "cell_type": "code", "source": [ - "import time\n", - "import math\n", - "from pathlib import Path\n", - "import pandas as pd\n", - "from tqdm.notebook import tqdm\n", - "\n", - "def fetch_issues(\n", - " owner=\"huggingface\",\n", - " repo=\"datasets\",\n", - " num_issues=10000,\n", - " rate_limit=5000,\n", - " issues_path=Path(\".\")\n", - "):\n", - " issues_path.mkdir(exist_ok=True)\n", - " batch = []\n", - " all_issues = []\n", - " per_page = 100 # Number of issues to return per page\n", - " num_pages = math.ceil(num_issues / per_page)\n", - " base_url = \"https://api.github.com/repos\"\n", - "\n", - " for page in tqdm(range(num_pages)):\n", - " # Query with state=all to get both open and closed issues\n", - " query = f\"issues?page={page}&per_page={per_page}&state=all\"\n", - " issues = requests.get(f\"{base_url}/{owner}/{repo}/{query}\", headers=headers)\n", - " batch.extend(issues.json())\n", - "\n", - " if len(batch) > rate_limit and len(all_issues) < num_issues:\n", - " all_issues.extend(batch)\n", - " batch = [] # Flush batch for next time period\n", - " print(f\"Reached GitHub rate limit. Sleeping for one hour ...\")\n", - " time.sleep(60 * 60 + 1)\n", + "from huggingface_hub import hf_hub_url\n", "\n", - " all_issues.extend(batch)\n", - " df = pd.DataFrame.from_records(all_issues)\n", - " df.to_json(f\"{issues_path}/{repo}-issues.jsonl\", orient=\"records\", lines=True)\n", - " print(\n", - " f\"Downloaded all the issues for {repo}! Dataset stored at {issues_path}/{repo}-issues.jsonl\"\n", - " )\n" + "data_files = hf_hub_url(\n", + " repo_id=\"lewtun/github-issues\",\n", + " filename=\"datasets-issues-with-comments.jsonl\",\n", + " repo_type=\"dataset\",\n", + ")\n" ], "metadata": { - "id": "4NSYVTaZiXs-" + "id": "R4574ETOHOSl" }, - "execution_count": 13, + "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ - "fetch_issues()" + "from datasets import load_dataset\n", + "\n", + "issues_dataset = load_dataset(\"json\", data_files=data_files, split=\"train\")\n", + "issues_dataset" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 66, + "height": 255, "referenced_widgets": [ - "1abf35d7e3f84665be946d3821684528", - "d48d4dae51db421d804cb579063c8049", - "1ea6e079d84446ef800bb11d1216ec15", - "1df3b19b5e4a4ca893d4984097e36d33", - "c853c3926d02463a85c74d6913ed7338", - "16c862053a824d3c87f5171a3bafc0ef", - "ef5483a5ab3c428996176b2fe48a7ab9", - "e2d31c986e5b4be88c655cebaf359872", - "92e840b0e057400ea43ae23dadb7e5d8", - "e57aaffa10c445ae99238b0d8a253f4f", - "cefe388fbd784838a975e7dda1984c94" + "03e6c647fe6c49c193e17923cd72213f", + "3ec2312d248a4f0285783b494a3fb547", + "4ffa37d7b0134de181481cc3936859da", + "4a8f6e9610004f119ee8e564107df119", + "5d43930587a84d3e85e12ee8557df8c0", + "4aa1da1d8e4641c9a115a62393a3bcad", + "c9fcdd6cd176466691484a17093b8d60", + "e4340e98a5224118b5d42d5b988e2fc8", + "7cc88f2638e540e9a6a0509440172745", + "84a5d31ee22f418db723f0cfc591fb26", + "0d4befa90f574b828656219120b2e02d", + "9d8a6b5ea714493eac3143fd0150efc8", + "b9cd08d2c5b2455097ea530a1cc7204a", + "3cba410ef1ec424a8b8ae0ee74509b0b", + "41eb6795c64247d9a7ab79a2cb5d4ad2", + "020a656eb95d46dc99feae468307f393", + "3ca413eee03b4b10a59e78671ebbb7f0", + "a342114b75e04abb8c20e74f9c4e528a", + "79ab509b83a34de49f0c928a09eecf8d", + "1a639fcaaccd4f3eae707b5d96c663f4", + "2650facb146b4e078b223c77128816fc", + "85cbfc47fe414f85ab164f13201aca7c", + "de6c95143f2a44e5a9eb9727d16a3c87", + "d21c0488d2664abaa722fcefdf1a4351", + "d936d8fd98904ac78f4565388bf60d19", + "bf1799f909d246bea028544c0d10442d", + "37169635be93431eb62a276564f2ae3c", + "6563f9ab8a0e4bc9a6e7c1ac72e102a1", + "73a623bf1076460b98666be79bdf8f56", + "dac184e638bd444db50b08a20c0d25d1", + "ebdeee2ecec94f67b10b9a9e4adc8354", + "207d06f50d0346579474188e7bf56de0", + "ef2fe559db30422990973c8f99be193c" ] }, - "id": "eE9KLjNAkYn3", - "outputId": "472503dc-6cd1-4eac-b05f-cec245c1648d" + "id": "h53H5uIDeIfM", + "outputId": "09e14018-acd0-47bb-f8b7-0fc314eda1cb" }, - "execution_count": 14, + "execution_count": null, "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Using custom data configuration default-ece7c1527bad24e5\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-ece7c1527bad24e5/0.0.0/c90812beea906fcffe0d5e3bb9eba909a80a998b5f88e9f8acbd320aa91acfde...\n" + ] + }, { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1abf35d7e3f84665be946d3821684528", + "model_id": "03e6c647fe6c49c193e17923cd72213f", "version_minor": 0, "version_major": 2 }, "text/plain": [ - " 0%| | 0/100 [00:00 0)\n", + ")\n", + "issues_dataset" ], "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "base_uri": "https://localhost:8080/", + "height": 138, + "referenced_widgets": [ + "28fb2aace5f24254871e5b08e5dfee58", + "7da6b95d0aaf4bfc843d265c5a105644", + "bcbc95df2dbe443c86dca31423f1c831", + "fa3018954eef43008c439be3e9e43f31", + "b52cef6d99834adc82e2d922d671d5e5", + "07292b80756a4cbfb1ad5ecf29bb1ea6", + "8b4ce7eafd7c48b595896ce9deb28727", + "d71b3864e5cf4675b36b7033fbd21ffc", + "e1288966043645b8a0e11e9c1b50c75f", + "9718ce6bacaa47feb3e63ddebff37573", + "948f5cd3191644fca249520e8823dd8c" + ] }, - "id": "E50ktLWMgKcQ", - "outputId": "5ee3cfe1-ec87-42ac-af23-47745c3dc6ac" + "id": "EOkBuyZae3xk", + "outputId": "ee950bdf-1702-4b46-a55d-f072950c2af9" }, - "execution_count": 20, + "execution_count": null, "outputs": [ { - "output_type": "stream", - "name": "stderr", - "text": [ - "Loading cached shuffled indices for dataset at /root/.cache/huggingface/datasets/json/default-3884bd80e2aae1ff/0.0.0/c90812beea906fcffe0d5e3bb9eba909a80a998b5f88e9f8acbd320aa91acfde/cache-b8ded3760acae811.arrow\n" - ] + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "28fb2aace5f24254871e5b08e5dfee58", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0/4 [00:00\n", + "
\n", "
\n", "
\n", "