Datasets:
Tasks:
Question Answering
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
table-question-answering
License:
Qian
commited on
Commit
•
3ff337e
1
Parent(s):
3adfe29
Add wikitablequestions dataset (#3870)
Browse files* Add wikitablequestions dataset
* Using tsv instead of csv file to support better.
* fix checksum for dataset wikitablequestions - pass all tests.
* Fix the answer as a sequence instead of a string.
* reduce the dummy data size
* fix the answer name and the table example json
* Fix the answer as a sequence instead of a string.
* Fix the dummy data files.
* * fix the skip on streaming mode.
* * remove other dummy data
Commit from https://github.com/huggingface/datasets/commit/b2af98ca83f4509a0c885c3187bfe97f38c9d99c
- README.md +189 -0
- dataset_infos.json +1 -0
- dummy/random-split-1/1.0.2/dummy_data.zip +3 -0
- wikitablequestions.py +184 -0
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
paperswithcode_id: null
|
13 |
+
pretty_name: WikiTableQuestions
|
14 |
+
size_categories:
|
15 |
+
- 10K<n<100K
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
task_categories:
|
19 |
+
- question-answering
|
20 |
+
task_ids:
|
21 |
+
- question-answering-other-table-question-answering
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for WikiTableQuestions
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Dataset Description](#dataset-description)
|
28 |
+
- [Dataset Summary](#dataset-summary)
|
29 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
30 |
+
- [Languages](#languages)
|
31 |
+
- [Dataset Structure](#dataset-structure)
|
32 |
+
- [Data Instances](#data-instances)
|
33 |
+
- [Data Fields](#data-instances)
|
34 |
+
- [Data Splits](#data-instances)
|
35 |
+
- [Dataset Creation](#dataset-creation)
|
36 |
+
- [Curation Rationale](#curation-rationale)
|
37 |
+
- [Source Data](#source-data)
|
38 |
+
- [Annotations](#annotations)
|
39 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
40 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
41 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
42 |
+
- [Discussion of Biases](#discussion-of-biases)
|
43 |
+
- [Other Known Limitations](#other-known-limitations)
|
44 |
+
- [Additional Information](#additional-information)
|
45 |
+
- [Dataset Curators](#dataset-curators)
|
46 |
+
- [Licensing Information](#licensing-information)
|
47 |
+
- [Citation Information](#citation-information)
|
48 |
+
|
49 |
+
## Dataset Description
|
50 |
+
|
51 |
+
- **Homepage:** [WikiTableQuestions homepage](https://nlp.stanford.edu/software/sempre/wikitable)
|
52 |
+
- **Repository:** [WikiTableQuestions repository](https://github.com/ppasupat/WikiTableQuestions)
|
53 |
+
- **Paper:** [Compositional Semantic Parsing on Semi-Structured Tables](https://arxiv.org/abs/1508.00305)
|
54 |
+
- **Leaderboard:** [WikiTableQuestions leaderboard on PaperWithCode](https://paperswithcode.com/dataset/wikitablequestions)
|
55 |
+
- **Point of Contact:** [Needs More Information]
|
56 |
+
|
57 |
+
### Dataset Summary
|
58 |
+
|
59 |
+
The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.
|
60 |
+
|
61 |
+
### Supported Tasks and Leaderboards
|
62 |
+
|
63 |
+
question-answering, table-question-answering
|
64 |
+
|
65 |
+
### Languages
|
66 |
+
|
67 |
+
en
|
68 |
+
|
69 |
+
## Dataset Structure
|
70 |
+
|
71 |
+
### Data Instances
|
72 |
+
|
73 |
+
#### default
|
74 |
+
|
75 |
+
- **Size of downloaded dataset files:** 27.91 MB
|
76 |
+
- **Size of the generated dataset:** 45.68 MB
|
77 |
+
- **Total amount of disk used:** 73.60 MB
|
78 |
+
|
79 |
+
An example of 'validation' looks as follows:
|
80 |
+
```
|
81 |
+
{
|
82 |
+
"id": "nt-0",
|
83 |
+
"question": "what was the last year where this team was a part of the usl a-league?",
|
84 |
+
"answers": ["2004"],
|
85 |
+
"table": {
|
86 |
+
"header": ["Year", "Division", "League", ...],
|
87 |
+
"name": "csv/204-csv/590.csv",
|
88 |
+
"rows": [
|
89 |
+
["2001", "2", "USL A-League", ...],
|
90 |
+
["2002", "2", "USL A-League", ...],
|
91 |
+
...
|
92 |
+
]
|
93 |
+
}
|
94 |
+
}
|
95 |
+
```
|
96 |
+
|
97 |
+
### Data Fields
|
98 |
+
|
99 |
+
The data fields are the same among all splits.
|
100 |
+
|
101 |
+
#### default
|
102 |
+
- `id`: a `string` feature.
|
103 |
+
- `question`: a `string` feature.
|
104 |
+
- `answers`: a `list` of `string` feature.
|
105 |
+
- `table`: a dictionary feature containing:
|
106 |
+
- `header`: a `list` of `string` features.
|
107 |
+
- `rows`: a `list` of `list` of `string` features:
|
108 |
+
- `name`: a `string` feature.
|
109 |
+
|
110 |
+
### Data Splits
|
111 |
+
|
112 |
+
| name |train|validation|test |
|
113 |
+
|-------|----:|---------:|----:|
|
114 |
+
|default|11321| 2831|4344|
|
115 |
+
|
116 |
+
## Dataset Creation
|
117 |
+
|
118 |
+
### Curation Rationale
|
119 |
+
|
120 |
+
[Needs More Information]
|
121 |
+
|
122 |
+
### Source Data
|
123 |
+
|
124 |
+
#### Initial Data Collection and Normalization
|
125 |
+
|
126 |
+
[Needs More Information]
|
127 |
+
|
128 |
+
#### Who are the source language producers?
|
129 |
+
|
130 |
+
[Needs More Information]
|
131 |
+
|
132 |
+
### Annotations
|
133 |
+
|
134 |
+
#### Annotation process
|
135 |
+
|
136 |
+
[Needs More Information]
|
137 |
+
|
138 |
+
#### Who are the annotators?
|
139 |
+
|
140 |
+
[Needs More Information]
|
141 |
+
|
142 |
+
### Personal and Sensitive Information
|
143 |
+
|
144 |
+
[Needs More Information]
|
145 |
+
|
146 |
+
## Considerations for Using the Data
|
147 |
+
|
148 |
+
### Social Impact of Dataset
|
149 |
+
|
150 |
+
[Needs More Information]
|
151 |
+
|
152 |
+
### Discussion of Biases
|
153 |
+
|
154 |
+
[Needs More Information]
|
155 |
+
|
156 |
+
### Other Known Limitations
|
157 |
+
|
158 |
+
[Needs More Information]
|
159 |
+
|
160 |
+
## Additional Information
|
161 |
+
|
162 |
+
### Dataset Curators
|
163 |
+
|
164 |
+
Panupong Pasupat and Percy Liang
|
165 |
+
|
166 |
+
### Licensing Information
|
167 |
+
|
168 |
+
Creative Commons Attribution Share Alike 4.0 International
|
169 |
+
|
170 |
+
### Citation Information
|
171 |
+
|
172 |
+
```
|
173 |
+
@inproceedings{pasupat-liang-2015-compositional,
|
174 |
+
title = "Compositional Semantic Parsing on Semi-Structured Tables",
|
175 |
+
author = "Pasupat, Panupong and Liang, Percy",
|
176 |
+
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
|
177 |
+
month = jul,
|
178 |
+
year = "2015",
|
179 |
+
address = "Beijing, China",
|
180 |
+
publisher = "Association for Computational Linguistics",
|
181 |
+
url = "https://aclanthology.org/P15-1142",
|
182 |
+
doi = "10.3115/v1/P15-1142",
|
183 |
+
pages = "1470--1480",
|
184 |
+
}
|
185 |
+
```
|
186 |
+
|
187 |
+
### Contributions
|
188 |
+
|
189 |
+
Thanks to [@SivilTaram](https://github.com/SivilTaram) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"random-split-1": {"description": "This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.\n", "citation": "@inproceedings{pasupat-liang-2015-compositional,\n title = \"Compositional Semantic Parsing on Semi-Structured Tables\",\n author = \"Pasupat, Panupong and Liang, Percy\",\n booktitle = \"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)\",\n month = jul,\n year = \"2015\",\n address = \"Beijing, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P15-1142\",\n doi = \"10.3115/v1/P15-1142\",\n pages = \"1470--1480\",\n}\n", "homepage": "https://nlp.stanford.edu/software/sempre/wikitable", "license": "Creative Commons Attribution Share Alike 4.0 International", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_table_questions", "config_name": "random-split-1", "version": {"version_str": "1.0.2", "description": null, "major": 1, "minor": 0, "patch": 2}, "splits": {"train": {"name": "train", "num_bytes": 30364389, "num_examples": 11321, "dataset_name": "wiki_table_questions"}, "test": {"name": "test", "num_bytes": 11423506, "num_examples": 4344, "dataset_name": "wiki_table_questions"}, "validation": {"name": "validation", "num_bytes": 7145768, "num_examples": 2831, "dataset_name": "wiki_table_questions"}}, "download_checksums": {"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip": {"num_bytes": 29267445, "checksum": "7c9ca7cc1ccd75fe4be0255b44be63f7b566761005f4ee6ce67e51c129d8b085"}}, "download_size": 29267445, "post_processing_size": null, "dataset_size": 48933663, "size_in_bytes": 78201108}, "random-split-2": {"description": "This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.\n", "citation": "@inproceedings{pasupat-liang-2015-compositional,\n title = \"Compositional Semantic Parsing on Semi-Structured Tables\",\n author = \"Pasupat, Panupong and Liang, Percy\",\n booktitle = \"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)\",\n month = jul,\n year = \"2015\",\n address = \"Beijing, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P15-1142\",\n doi = \"10.3115/v1/P15-1142\",\n pages = \"1470--1480\",\n}\n", "homepage": "https://nlp.stanford.edu/software/sempre/wikitable", "license": "Creative Commons Attribution Share Alike 4.0 International", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_table_questions", "config_name": "random-split-2", "version": {"version_str": "1.0.2", "description": null, "major": 1, "minor": 0, "patch": 2}, "splits": {"train": {"name": "train", "num_bytes": 30098954, "num_examples": 11314, "dataset_name": "wiki_table_questions"}, "test": {"name": "test", "num_bytes": 11423506, "num_examples": 4344, "dataset_name": "wiki_table_questions"}, "validation": {"name": "validation", "num_bytes": 7411203, "num_examples": 2838, "dataset_name": "wiki_table_questions"}}, "download_checksums": {"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip": {"num_bytes": 29267445, "checksum": "7c9ca7cc1ccd75fe4be0255b44be63f7b566761005f4ee6ce67e51c129d8b085"}}, "download_size": 29267445, "post_processing_size": null, "dataset_size": 48933663, "size_in_bytes": 78201108}, "random-split-3": {"description": "This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.\n", "citation": "@inproceedings{pasupat-liang-2015-compositional,\n title = \"Compositional Semantic Parsing on Semi-Structured Tables\",\n author = \"Pasupat, Panupong and Liang, Percy\",\n booktitle = \"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)\",\n month = jul,\n year = \"2015\",\n address = \"Beijing, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P15-1142\",\n doi = \"10.3115/v1/P15-1142\",\n pages = \"1470--1480\",\n}\n", "homepage": "https://nlp.stanford.edu/software/sempre/wikitable", "license": "Creative Commons Attribution Share Alike 4.0 International", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_table_questions", "config_name": "random-split-3", "version": {"version_str": "1.0.2", "description": null, "major": 1, "minor": 0, "patch": 2}, "splits": {"train": {"name": "train", "num_bytes": 28778697, "num_examples": 11314, "dataset_name": "wiki_table_questions"}, "test": {"name": "test", "num_bytes": 11423506, "num_examples": 4344, "dataset_name": "wiki_table_questions"}, "validation": {"name": "validation", "num_bytes": 8731460, "num_examples": 2838, "dataset_name": "wiki_table_questions"}}, "download_checksums": {"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip": {"num_bytes": 29267445, "checksum": "7c9ca7cc1ccd75fe4be0255b44be63f7b566761005f4ee6ce67e51c129d8b085"}}, "download_size": 29267445, "post_processing_size": null, "dataset_size": 48933663, "size_in_bytes": 78201108}, "random-split-4": {"description": "This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.\n", "citation": "@inproceedings{pasupat-liang-2015-compositional,\n title = \"Compositional Semantic Parsing on Semi-Structured Tables\",\n author = \"Pasupat, Panupong and Liang, Percy\",\n booktitle = \"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)\",\n month = jul,\n year = \"2015\",\n address = \"Beijing, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P15-1142\",\n doi = \"10.3115/v1/P15-1142\",\n pages = \"1470--1480\",\n}\n", "homepage": "https://nlp.stanford.edu/software/sempre/wikitable", "license": "Creative Commons Attribution Share Alike 4.0 International", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_table_questions", "config_name": "random-split-4", "version": {"version_str": "1.0.2", "description": null, "major": 1, "minor": 0, "patch": 2}, "splits": {"train": {"name": "train", "num_bytes": 30166421, "num_examples": 11321, "dataset_name": "wiki_table_questions"}, "test": {"name": "test", "num_bytes": 11423506, "num_examples": 4344, "dataset_name": "wiki_table_questions"}, "validation": {"name": "validation", "num_bytes": 7343736, "num_examples": 2831, "dataset_name": "wiki_table_questions"}}, "download_checksums": {"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip": {"num_bytes": 29267445, "checksum": "7c9ca7cc1ccd75fe4be0255b44be63f7b566761005f4ee6ce67e51c129d8b085"}}, "download_size": 29267445, "post_processing_size": null, "dataset_size": 48933663, "size_in_bytes": 78201108}, "random-split-5": {"description": "This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.\n", "citation": "@inproceedings{pasupat-liang-2015-compositional,\n title = \"Compositional Semantic Parsing on Semi-Structured Tables\",\n author = \"Pasupat, Panupong and Liang, Percy\",\n booktitle = \"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)\",\n month = jul,\n year = \"2015\",\n address = \"Beijing, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/P15-1142\",\n doi = \"10.3115/v1/P15-1142\",\n pages = \"1470--1480\",\n}\n", "homepage": "https://nlp.stanford.edu/software/sempre/wikitable", "license": "Creative Commons Attribution Share Alike 4.0 International", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "table": {"header": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "rows": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "name": {"dtype": "string", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "wiki_table_questions", "config_name": "random-split-5", "version": {"version_str": "1.0.2", "description": null, "major": 1, "minor": 0, "patch": 2}, "splits": {"train": {"name": "train", "num_bytes": 30333964, "num_examples": 11316, "dataset_name": "wiki_table_questions"}, "test": {"name": "test", "num_bytes": 11423506, "num_examples": 4344, "dataset_name": "wiki_table_questions"}, "validation": {"name": "validation", "num_bytes": 7176193, "num_examples": 2836, "dataset_name": "wiki_table_questions"}}, "download_checksums": {"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip": {"num_bytes": 29267445, "checksum": "7c9ca7cc1ccd75fe4be0255b44be63f7b566761005f4ee6ce67e51c129d8b085"}}, "download_size": 29267445, "post_processing_size": null, "dataset_size": 48933663, "size_in_bytes": 78201108}}
|
dummy/random-split-1/1.0.2/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:117d768167b66026421067e7ca8c9ad2bc5d32a4c7e622e77d5fbbb2843c4ef5
|
3 |
+
size 56682
|
wikitablequestions.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables."""
|
15 |
+
|
16 |
+
import os
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
|
21 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
22 |
+
_CITATION = """\
|
23 |
+
@inproceedings{pasupat-liang-2015-compositional,
|
24 |
+
title = "Compositional Semantic Parsing on Semi-Structured Tables",
|
25 |
+
author = "Pasupat, Panupong and Liang, Percy",
|
26 |
+
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
|
27 |
+
month = jul,
|
28 |
+
year = "2015",
|
29 |
+
address = "Beijing, China",
|
30 |
+
publisher = "Association for Computational Linguistics",
|
31 |
+
url = "https://aclanthology.org/P15-1142",
|
32 |
+
doi = "10.3115/v1/P15-1142",
|
33 |
+
pages = "1470--1480",
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
# You can copy an official description
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_HOMEPAGE = "https://nlp.stanford.edu/software/sempre/wikitable"
|
43 |
+
|
44 |
+
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International"
|
45 |
+
|
46 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
47 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
48 |
+
_DATA_URL = (
|
49 |
+
"https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip"
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class WikiTableQuestions(datasets.GeneratorBasedBuilder):
|
54 |
+
"""WikiTableQuestions: a large-scale dataset for the task of question answering on semi-structured tables."""
|
55 |
+
|
56 |
+
VERSION = datasets.Version("1.0.2")
|
57 |
+
|
58 |
+
# This is an example of a dataset with multiple configurations.
|
59 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
60 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
61 |
+
|
62 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
63 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
64 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
65 |
+
|
66 |
+
# You will be able to load one or the other configurations in the following list with
|
67 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
68 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
69 |
+
BUILDER_CONFIGS = [
|
70 |
+
datasets.BuilderConfig(
|
71 |
+
name="random-split-1",
|
72 |
+
version=VERSION,
|
73 |
+
description="The random-split-1-train/dev.tsv and pristine-unseen-tables.tsv",
|
74 |
+
),
|
75 |
+
datasets.BuilderConfig(
|
76 |
+
name="random-split-2",
|
77 |
+
version=VERSION,
|
78 |
+
description="The random-split-2-train/dev.tsv and pristine-unseen-tables.tsv",
|
79 |
+
),
|
80 |
+
datasets.BuilderConfig(
|
81 |
+
name="random-split-3",
|
82 |
+
version=VERSION,
|
83 |
+
description="The random-split-3-train/dev.tsv and pristine-unseen-tables.tsv",
|
84 |
+
),
|
85 |
+
datasets.BuilderConfig(
|
86 |
+
name="random-split-4",
|
87 |
+
version=VERSION,
|
88 |
+
description="The random-split-4-train/dev.tsv and pristine-unseen-tables.tsv",
|
89 |
+
),
|
90 |
+
datasets.BuilderConfig(
|
91 |
+
name="random-split-5",
|
92 |
+
version=VERSION,
|
93 |
+
description="The random-split-5-train/dev.tsv and pristine-unseen-tables.tsv",
|
94 |
+
),
|
95 |
+
]
|
96 |
+
|
97 |
+
DEFAULT_CONFIG_NAME = (
|
98 |
+
"random-split-1" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
99 |
+
)
|
100 |
+
|
101 |
+
def _info(self):
|
102 |
+
features = datasets.Features(
|
103 |
+
{
|
104 |
+
"id": datasets.Value("string"),
|
105 |
+
"question": datasets.Value("string"),
|
106 |
+
"answers": datasets.features.Sequence(datasets.Value("string")),
|
107 |
+
"table": {
|
108 |
+
"header": datasets.features.Sequence(datasets.Value("string")),
|
109 |
+
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
|
110 |
+
"name": datasets.Value("string"),
|
111 |
+
},
|
112 |
+
}
|
113 |
+
)
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
# This is the description that will appear on the datasets page.
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
# This defines the different columns of the dataset and their types
|
118 |
+
features=features, # Here we define them above because they are different between the two configurations
|
119 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
120 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
121 |
+
# supervised_keys=("sentence", "label"),
|
122 |
+
# Homepage of the dataset for documentation
|
123 |
+
homepage=_HOMEPAGE,
|
124 |
+
# License for the dataset if available
|
125 |
+
license=_LICENSE,
|
126 |
+
# Citation for the dataset
|
127 |
+
citation=_CITATION,
|
128 |
+
)
|
129 |
+
|
130 |
+
def _split_generators(self, dl_manager):
|
131 |
+
train_file = "{}-train.tsv".format(self.config.name)
|
132 |
+
dev_file = "{}-dev.tsv".format(self.config.name)
|
133 |
+
test_file = "pristine-unseen-tables.tsv"
|
134 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
135 |
+
urls = _DATA_URL
|
136 |
+
root_dir = os.path.join(dl_manager.download_and_extract(urls), "WikiTableQuestions")
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TRAIN,
|
140 |
+
# These kwargs will be passed to _generate_examples
|
141 |
+
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", train_file), "root_dir": root_dir},
|
142 |
+
),
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.TEST,
|
145 |
+
# These kwargs will be passed to _generate_examples
|
146 |
+
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", test_file), "root_dir": root_dir},
|
147 |
+
),
|
148 |
+
datasets.SplitGenerator(
|
149 |
+
name=datasets.Split.VALIDATION,
|
150 |
+
# These kwargs will be passed to _generate_examples
|
151 |
+
gen_kwargs={"main_filepath": os.path.join(root_dir, "data", dev_file), "root_dir": root_dir},
|
152 |
+
),
|
153 |
+
]
|
154 |
+
|
155 |
+
def _read_table_from_file(self, table_name: str, root_dir: str):
|
156 |
+
def _extract_table_content(_line: str):
|
157 |
+
_vals = [_.replace("\n", " ").strip() for _ in _line.strip("\n").split("\t")]
|
158 |
+
return _vals
|
159 |
+
|
160 |
+
rows = []
|
161 |
+
# assert ".csv" in _wtq_table_name
|
162 |
+
# use the normalized table file
|
163 |
+
table_name = table_name.replace(".csv", ".tsv")
|
164 |
+
with open(os.path.join(root_dir, table_name), "r", encoding="utf8") as table_f:
|
165 |
+
table_lines = table_f.readlines()
|
166 |
+
# the first line is header
|
167 |
+
header = _extract_table_content(table_lines[0])
|
168 |
+
for line in table_lines[1:]:
|
169 |
+
rows.append(_extract_table_content(line))
|
170 |
+
return {"header": header, "rows": rows, "name": table_name}
|
171 |
+
|
172 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
173 |
+
def _generate_examples(self, main_filepath, root_dir):
|
174 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
175 |
+
with open(main_filepath, encoding="utf-8") as f:
|
176 |
+
# skip the first line since it is the tsv header
|
177 |
+
next(f)
|
178 |
+
for idx, line in enumerate(f):
|
179 |
+
example_id, question, table_name, answer = line.strip("\n").split("\t")
|
180 |
+
answer = answer.split("|")
|
181 |
+
# must contain rows and header keys
|
182 |
+
table_content = self._read_table_from_file(table_name, root_dir)
|
183 |
+
|
184 |
+
yield idx, {"id": example_id, "question": question, "answers": answer, "table": table_content}
|