import json import datasets _REPO_NAME = "TeDriCS/tedrics-data" _DESCRIPTION = "" _HOMEPAGE = "" _CITATION = """\ @misc{, title={ }, author={}, year={2022} } """ _LICENSE = 'CC BY-SA' _SUBSETS = ["tasks", "testcases", "codefunctions"] _DATA_URLS = { "tasks": { "train": "tedrics_data_tasks.json" }, "testcases": { "train": "tedrics_data_testcases.json", "validation": "tedrics_data_testcases_val.json" }, "codefunctions": { "train": "tedrics_data_codefunctions.json", "validation": "tedrics_data_codefunctions_val.json" } } class TeDriCSData(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name=f"{subset}", version=datasets.Version("1.1.0"), description=_DESCRIPTION, ) for subset in _SUBSETS ] DEFAULT_CONFIG_NAME = "tasks" def _info(self): if self.config.name == "tasks": features = datasets.Features( { "task_id": datasets.Value("int32"), "mbpp_task_id": datasets.Value("int32"), "source": datasets.Value("string"), "licence": datasets.Value("string"), "task": datasets.Value("string"), } ) if self.config.name == "testcases": features = datasets.Features( { "task_id": datasets.Value("int32"), "mbpp_task_id": datasets.Value("int32"), "task": datasets.Value("string"), "test_cases": datasets.Sequence( { "test_case_id": datasets.Value("int32"), "cot": datasets.Value("string"), "input": datasets.Value("string"), "output": datasets.Value("string") } ) } ) if self.config.name == "codefunctions": features = datasets.Features( { "task_id": datasets.Value("int32"), "mbpp_task_id": datasets.Value("int32"), "description": datasets.Value("string"), "cot": datasets.Value("string"), "imports": datasets.Value("string"), "function_head": datasets.Value("string"), "function_body": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _DATA_URLS[self.config.name] data = dl_manager.download_and_extract(urls) splits = [] if self.config.name == "tasks": splits = [datasets.Split.TRAIN] if self.config.name == "testcases" or self.config.name == "codefunctions": splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION] return [ datasets.SplitGenerator( name=split, gen_kwargs={ "filepath": data[split], }, ) for split in splits ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as file: data = json.load(file) id_ = 0 for sample in data: yield id_, sample id_ += 1 from datasets import load_dataset def main(): # Zum Testen der Implementierung dataset = load_dataset('C:\\Users\\klaud\\TeDriCSProj\\tedrics-data\\tedrics_data.py') print(dataset["train"]) print(dataset["train"][0]) #print(dataset["validation"]) #print(dataset["validation"][0]) # Zum Generieren der dataset_infos.json (im Terminal) # (hf-gptneox-cpu) PS C:\Users\klaud\TeDriCSProj\tedrics-data> datasets-cli test C:\Users\klaud\TeDriCSProj\tedrics-data\tedrics_data.py --save_infos --all_configs if __name__ == "__main__": main()