|
import datasets |
|
import json |
|
import numpy |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"), |
|
"video": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float64")), |
|
"description": datasets.Value("string"), |
|
"videourl": datasets.Value("string"), |
|
"categories": datasets.Value("string"), |
|
"duration": datasets.Value("float"), |
|
"full_metadata": datasets.Value("string"), |
|
} |
|
) |
|
|
|
class FunkLoaderStream(datasets.GeneratorBasedBuilder): |
|
"""TempoFunk Dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="TempoFunk Dataset", |
|
features=_FEATURES, |
|
homepage="None", |
|
citation="None", |
|
license="None" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
print("id_list available at:", dl_manager.download("data/id_list.json")) |
|
|
|
_ID_LIST = json.loads(open(dl_manager.download("data/id_list.json"), 'r').read()) |
|
|
|
_SHARD_LENGTH = 20 |
|
|
|
_SPLITS = [_ID_LIST[i:i + _SHARD_LENGTH] for i in range(0, len(_ID_LIST), _SHARD_LENGTH)] |
|
|
|
print("avail splits: ", _SPLITS) |
|
|
|
|
|
l=[] |
|
|
|
_split_count = 0 |
|
|
|
for split in _SPLITS: |
|
|
|
_list = [] |
|
|
|
for video_id in split: |
|
_list.append({ |
|
"frames": dl_manager.download(f"data/videos/{video_id}.npy"), |
|
"prompt": dl_manager.download(f"data/prompts/{video_id}.npy"), |
|
"metadata": dl_manager.download(f"data/metadata/{video_id}.json"), |
|
}) |
|
|
|
l.append( |
|
datasets.SplitGenerator( |
|
name=f"split_{_split_count}", |
|
gen_kwargs={ |
|
"chunk_container": _list, |
|
},) |
|
) |
|
|
|
_split_count = _split_count + 1 |
|
|
|
print("Total Splits: ", _split_count) |
|
|
|
return l |
|
|
|
def _generate_examples(self, chunk_container): |
|
"""Generate images and labels for splits.""" |
|
for video_entry in chunk_container: |
|
frames_binary = video_entry['frames'] |
|
prompt_binary = video_entry['prompt'] |
|
metadata = json.loads(open(video_entry['metadata'], 'r').read()) |
|
|
|
txt_embed = numpy.load(prompt_binary) |
|
vid_embed = numpy.load(frames_binary) |
|
|
|
|
|
|
|
|
|
print(vid_embed.shape) |
|
|
|
yield metadata['id'], { |
|
"id": metadata['id'], |
|
"prompt": txt_embed, |
|
"video": vid_embed, |
|
"description": metadata['description'], |
|
"videourl": metadata['videourl'], |
|
"categories": metadata['categories'], |
|
"duration": metadata['duration'], |
|
"full_metadata": metadata |
|
} |