|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SciFact Dataset (Retrieval Only)""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@inproceedings{Wadden2020FactOF, |
|
title={Fact or Fiction: Verifying Scientific Claims}, |
|
author={David Wadden and Shanchuan Lin and Kyle Lo and Lucy Lu Wang and Madeleine van Zuylen and Arman Cohan and Hannaneh Hajishirzi}, |
|
booktitle={EMNLP}, |
|
year={2020}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for SciFact" |
|
|
|
_DATASET_URLS = { |
|
'train': "https://huggingface.co/datasets/Tevatron/scifact/resolve/main/train.jsonl.gz", |
|
'dev': "https://huggingface.co/datasets/Tevatron/scifact/resolve/main/dev.jsonl.gz", |
|
'test': "https://huggingface.co/datasets/Tevatron/scifact/resolve/main/test.jsonl.gz", |
|
} |
|
|
|
|
|
class Scifact(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
description="SciFact train/dev/test datasets"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query': datasets.Value('string'), |
|
'positive_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string')} |
|
], |
|
'negative_passages': [ |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string')} |
|
], |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name='dev', |
|
gen_kwargs={ |
|
"filepath": downloaded_files["dev"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name='test', |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('negative_passages') is None: |
|
data['negative_passages'] = [] |
|
if data.get('positive_passages') is None: |
|
data['positive_passages'] = [] |
|
yield data['query_id'], data |
|
|