CityLearn / CityLearn.py
TobiTob's picture
Update CityLearn.py
4b0fd8d
raw
history blame
7.62 kB
import pickle
import datasets
import numpy as np
_DESCRIPTION = """The dataset consists of tuples of (observations, actions, rewards, dones) sampled by agents
interacting with the CityLearn 2022 Phase 1 environment"""
_BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
_URLS = {
"s_test": f"{_BASE_URL}/s_test.pkl",
"s_week": f"{_BASE_URL}/s_week.pkl",
"s_month": f"{_BASE_URL}/s_month.pkl",
"s_random": f"{_BASE_URL}/s_random.pkl",
"s_random2": f"{_BASE_URL}/s_random2.pkl",
"s_random3": f"{_BASE_URL}/s_random3.pkl",
"s_random4": f"{_BASE_URL}/s_random4.pkl",
"f_230": f"{_BASE_URL}/f_230x5x38.pkl",
"f_50": f"{_BASE_URL}/f_50x5x1750.pkl",
"f_24": f"{_BASE_URL}/f_24x5x364.pkl",
"fr_24": f"{_BASE_URL}/fr_24x5x364.pkl",
"fn_24": f"{_BASE_URL}/fn_24x5x3649.pkl",
"fn_230": f"{_BASE_URL}/fn_230x5x380.pkl",
"rb_24": f"{_BASE_URL}/rb_24x5x364.pkl",
"rb_50": f"{_BASE_URL}/rb_50x5x175.pkl",
"rb_108": f"{_BASE_URL}/rb_108x5x81.pkl",
"rb_230": f"{_BASE_URL}/rb_230x5x38.pkl",
"rb_461": f"{_BASE_URL}/rb_461x5x19.pkl",
"rb_973": f"{_BASE_URL}/rb_973x5x9.pkl",
"rb_2189": f"{_BASE_URL}/rb_2189x5x4.pkl",
"rbn_24": f"{_BASE_URL}/rb_24x5x18247.pkl",
}
class DecisionTransformerCityLearnDataset(datasets.GeneratorBasedBuilder):
# You will be able to load one configuration in the following list with
# data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="s_test",
description="Small dataset sampled from an expert policy in CityLearn environment. Data size 10x8",
),
datasets.BuilderConfig(
name="s_week",
description="Data sampled from an expert policy in CityLearn environment. Data size 260x168",
),
datasets.BuilderConfig(
name="s_month",
description="Data sampled from an expert policy in CityLearn environment. Data size 60x720",
),
datasets.BuilderConfig(
name="s_random",
description="Random environment interactions in CityLearn environment. Data size 950x461",
),
datasets.BuilderConfig(
name="s_random2",
description="Random environment interactions in CityLearn environment. Data size 43795x10",
),
datasets.BuilderConfig(
name="s_random3",
description="Random environment interactions in CityLearn environment. Data size 23050x19",
),
datasets.BuilderConfig(
name="s_random4",
description="Random environment interactions in CityLearn environment. Data size 437950x1",
),
datasets.BuilderConfig(
name="f_230",
description="Data sampled from an expert policy in CityLearn environment. Sequence length = 230, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="f_50",
description="Data sampled from an expert policy in CityLearn environment. Sequence length = 50, Buildings = 5, Episodes = 10 ",
),
datasets.BuilderConfig(
name="f_24",
description="Data sampled from an expert policy in CityLearn environment. Sequence length = 24, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="fr_24",
description="Data sampled from an expert policy in CityLearn environment. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="fn_24",
description="Data sampled from an expert policy in CityLearn environment. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 10 ",
),
datasets.BuilderConfig(
name="fn_230",
description="Data sampled from an expert policy in CityLearn environment. Used the new reward function and changed some interactions with noise. Sequence length = 230, Buildings = 5, Episodes = 10 ",
),
datasets.BuilderConfig(
name="rb_24",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_50",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 50, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_108",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 108, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_230",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 230, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_461",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 461, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_973",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 973, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rb_2189",
description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 2189, Buildings = 5, Episodes = 1 ",
),
datasets.BuilderConfig(
name="rbn_24",
description="Data sampled from a simple rule based policy. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 50 ",
),
]
def _info(self):
features = datasets.Features(
{
"observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"rewards": datasets.Sequence(datasets.Value("float32")),
"dones": datasets.Sequence(datasets.Value("bool")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, "rb") as f:
trajectories = pickle.load(f)
for idx, traj in enumerate(trajectories):
yield idx, {
"observations": traj["observations"],
"actions": traj["actions"],
"rewards": np.expand_dims(traj["rewards"], axis=1),
"dones": np.expand_dims(traj.get("dones", traj.get("terminals")), axis=1),
}