TobiTob commited on
Commit
6052430
1 Parent(s): 80e2bad

Create evaluate_transformer.py

Browse files
Files changed (1) hide show
  1. evaluate_transformer.py +217 -0
evaluate_transformer.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import time
3
+ import torch
4
+ from MyDecisionTransformer import MyDecisionTransformer
5
+ from citylearn.citylearn import CityLearnEnv
6
+
7
+ """
8
+ This file is used to evaluate a decision transformer loaded form https://huggingface.co/TobiTob/model_name
9
+ """
10
+
11
+
12
+ class Constants:
13
+ """Environment Constants"""
14
+ episodes = 1 # amount of environment resets
15
+ state_dim = 28 # size of state space
16
+ action_dim = 1 # size of action space
17
+ schema_path = './data/citylearn_challenge_2022_phase_1/schema.json'
18
+
19
+ """Model Constants"""
20
+ load_model = "TobiTob/decision_transformer_2"
21
+ force_download = False
22
+ device = "cpu"
23
+ TARGET_RETURN = -2500 # vllt Vector aus 5 Werten
24
+ # mean and std computed from training dataset these are available in the model card for each model.
25
+
26
+ state_mean = np.array(
27
+ [6.525973284621532, 3.9928073981048064, 12.498801233017467, 16.836990550577212, 16.837287388159297,
28
+ 16.83684213167729, 16.837161803003287, 73.00388172165772, 73.00331088023746, 73.00445256307798,
29
+ 73.00331088023746, 208.30597100125584, 208.30597100125584, 208.20287704075807, 208.30597100125584,
30
+ 201.25448110514898, 201.25448110514898, 201.16189062678387, 201.25448110514898, 0.15652765849893777,
31
+ 1.0663012570140091, 0.6994348432433195, 0.5023924181838172, 0.49339119658209996, 0.2731373418679261,
32
+ 0.2731373418679261, 0.2731373418679261, 0.2731373418679261])
33
+ state_std = np.array(
34
+ [3.448045414453991, 2.0032677368929734, 6.921673394725967, 3.564552828057008, 3.5647828974724476,
35
+ 3.5643565817901974, 3.564711987899257, 16.480221141108398, 16.480030755727572, 16.480238315742053,
36
+ 16.480030755727565, 292.79094956097464, 292.79094956097464, 292.70528837855596, 292.79094956097543,
37
+ 296.18549714910006, 296.18549714910023, 296.1216266457902, 296.18549714910006, 0.035369600587780235,
38
+ 0.8889958578862672, 1.0171468928300462, 0.40202104980478576, 2.6674362928093682, 0.11780233435944305,
39
+ 0.11780233435944333, 0.11780233435944351, 0.11780233435944402])
40
+
41
+
42
+ def preprocess_states(state_list_of_lists, amount_buildings):
43
+ for bi in range(amount_buildings):
44
+ for si in range(Constants.state_dim):
45
+ state_list_of_lists[bi][si] = (state_list_of_lists[bi][si] - Constants.state_mean[si]) / Constants.state_std[si]
46
+
47
+ return state_list_of_lists
48
+
49
+
50
+ def evaluate():
51
+ print("========================= Start Evaluation ========================")
52
+ print("==> Model:", Constants.load_model)
53
+ print()
54
+
55
+ env = CityLearnEnv(schema=Constants.schema_path)
56
+
57
+ agent = MyDecisionTransformer(load_from=Constants.load_model, force_download=Constants.force_download,
58
+ device=Constants.device)
59
+
60
+ context_length = agent.model.config.max_length
61
+ amount_buildings = len(env.buildings)
62
+
63
+ scale = 1000.0 # normalization for rewards/returns
64
+ target_return = Constants.TARGET_RETURN / scale
65
+
66
+ print("Target Return:", Constants.TARGET_RETURN)
67
+ print("Context Length:", context_length)
68
+
69
+ # Initialize Tensors
70
+ episode_return = np.zeros(amount_buildings)
71
+ state_list_of_lists = env.reset()
72
+ state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
73
+
74
+ state_list_of_tensors = []
75
+ target_return_list_of_tensors = []
76
+ action_list_of_tensors = []
77
+ reward_list_of_tensors = []
78
+
79
+ for bi in range(amount_buildings):
80
+ state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to(
81
+ device=Constants.device,
82
+ dtype=torch.float32)
83
+ target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1, 1)
84
+ action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32)
85
+ reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32)
86
+
87
+ state_list_of_tensors.append(state_bi)
88
+ target_return_list_of_tensors.append(target_return_bi)
89
+ action_list_of_tensors.append(action_bi)
90
+ reward_list_of_tensors.append(reward_bi)
91
+
92
+ timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1)
93
+ # print(state_list_of_tensors) Liste mit 5 Tensoren, jeder Tensor enthält einen State s der Länge 28
94
+ # print(action_list_of_tensors) Liste mit 5 leeren Tensoren mit size (0,1)
95
+ # print(reward_list_of_tensors) Liste mit 5 leeren Tensoren ohne size
96
+ # print(target_return_list_of_tensors) Liste mit 5 leeren Tensoren, jeder Tensor enthält den target_return / scale
97
+ # print(timesteps) enthält einen Tensor mit 0: tensor([[0]])
98
+
99
+ episodes_completed = 0
100
+ num_steps = 0
101
+ t = 0
102
+ agent_time_elapsed = 0
103
+ episode_metrics = []
104
+
105
+ while True:
106
+
107
+ next_actions = []
108
+ for bi in range(amount_buildings):
109
+ action_list_of_tensors[bi] = torch.cat(
110
+ [action_list_of_tensors[bi], torch.zeros((1, Constants.action_dim), device=Constants.device)], dim=0)
111
+ reward_list_of_tensors[bi] = torch.cat(
112
+ [reward_list_of_tensors[bi], torch.zeros(1, device=Constants.device)])
113
+
114
+ # get actions for all buildings
115
+ step_start = time.perf_counter()
116
+ action_bi = agent.get_action(
117
+ state_list_of_tensors[bi],
118
+ action_list_of_tensors[bi],
119
+ reward_list_of_tensors[bi],
120
+ target_return_list_of_tensors[bi],
121
+ timesteps,
122
+ )
123
+ agent_time_elapsed += time.perf_counter() - step_start
124
+
125
+ action_list_of_tensors[bi][-1] = action_bi
126
+ action_bi = action_bi.detach().cpu().numpy()
127
+ next_actions.append(action_bi)
128
+
129
+ # Interaction with the environment
130
+ state_list_of_lists, reward_list_of_lists, done, _ = env.step(next_actions)
131
+ state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
132
+
133
+ if done:
134
+ episodes_completed += 1
135
+ metrics_t = env.evaluate()
136
+ metrics = {"price_cost": metrics_t[0], "emmision_cost": metrics_t[1], "grid_cost": metrics_t[2]}
137
+ if np.any(np.isnan(metrics_t)):
138
+ raise ValueError("Episode metrics are nan, please contant organizers")
139
+ episode_metrics.append(metrics)
140
+ print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics}", )
141
+ print("Episode Return:", episode_return)
142
+
143
+ # new Initialization and env Reset
144
+ t = 0
145
+ episode_return = np.zeros(amount_buildings)
146
+ state_list_of_lists = env.reset()
147
+ state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
148
+
149
+ state_list_of_tensors = []
150
+ target_return_list_of_tensors = []
151
+ action_list_of_tensors = []
152
+ reward_list_of_tensors = []
153
+
154
+ for bi in range(amount_buildings):
155
+ state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to(
156
+ device=Constants.device, dtype=torch.float32)
157
+ target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1,
158
+ 1)
159
+ action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32)
160
+ reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32)
161
+
162
+ state_list_of_tensors.append(state_bi)
163
+ target_return_list_of_tensors.append(target_return_bi)
164
+ action_list_of_tensors.append(action_bi)
165
+ reward_list_of_tensors.append(reward_bi)
166
+
167
+ timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1)
168
+
169
+ else:
170
+ # Process data for next step
171
+ for bi in range(amount_buildings):
172
+ cur_state = torch.from_numpy(np.array(state_list_of_lists[bi])).to(device=Constants.device).reshape(1,
173
+ Constants.state_dim)
174
+ state_list_of_tensors[bi] = torch.cat([state_list_of_tensors[bi], cur_state], dim=0)
175
+ reward_list_of_tensors[bi][-1] = reward_list_of_lists[bi]
176
+
177
+ pred_return = target_return_list_of_tensors[bi][0, -1] - (reward_list_of_lists[bi] / scale)
178
+ target_return_list_of_tensors[bi] = torch.cat(
179
+ [target_return_list_of_tensors[bi], pred_return.reshape(1, 1)], dim=1)
180
+
181
+ episode_return[bi] += reward_list_of_lists[bi]
182
+
183
+ timesteps = torch.cat([timesteps, torch.ones((1, 1), device=Constants.device, dtype=torch.long) * (t + 1)],
184
+ dim=1)
185
+
186
+ if timesteps.size(dim=1) > context_length:
187
+ # Store only the last values according to context_length
188
+ timesteps = timesteps[:, -context_length:]
189
+ for bi in range(amount_buildings):
190
+ state_list_of_tensors[bi] = state_list_of_tensors[bi][-context_length:]
191
+ action_list_of_tensors[bi] = action_list_of_tensors[bi][-context_length:]
192
+ reward_list_of_tensors[bi] = reward_list_of_tensors[bi][-context_length:]
193
+ target_return_list_of_tensors[bi] = target_return_list_of_tensors[bi][:, -context_length:]
194
+
195
+ num_steps += 1
196
+ t += 1
197
+ if num_steps % 100 == 0:
198
+ print(f"Num Steps: {num_steps}, Num episodes: {episodes_completed}")
199
+
200
+ if episodes_completed >= Constants.episodes:
201
+ break
202
+
203
+ print("========================= Evaluation Done ========================")
204
+ print("Total number of steps:", num_steps)
205
+ if len(episode_metrics) > 0:
206
+ price_cost = np.mean([e['price_cost'] for e in episode_metrics])
207
+ emission_cost = np.mean([e['emmision_cost'] for e in episode_metrics])
208
+ grid_cost = np.mean([e['grid_cost'] for e in episode_metrics])
209
+ print("Average Price Cost:", price_cost)
210
+ print("Average Emission Cost:", emission_cost)
211
+ print("Average Grid Cost:", grid_cost)
212
+ print("==>", (price_cost+emission_cost+grid_cost)/3)
213
+ print(f"Total time taken by agent: {agent_time_elapsed}s")
214
+
215
+
216
+ if __name__ == '__main__':
217
+ evaluate()