Create evaluate_transformer.py
Browse files- evaluate_transformer.py +217 -0
evaluate_transformer.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
from MyDecisionTransformer import MyDecisionTransformer
|
5 |
+
from citylearn.citylearn import CityLearnEnv
|
6 |
+
|
7 |
+
"""
|
8 |
+
This file is used to evaluate a decision transformer loaded form https://huggingface.co/TobiTob/model_name
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
class Constants:
|
13 |
+
"""Environment Constants"""
|
14 |
+
episodes = 1 # amount of environment resets
|
15 |
+
state_dim = 28 # size of state space
|
16 |
+
action_dim = 1 # size of action space
|
17 |
+
schema_path = './data/citylearn_challenge_2022_phase_1/schema.json'
|
18 |
+
|
19 |
+
"""Model Constants"""
|
20 |
+
load_model = "TobiTob/decision_transformer_2"
|
21 |
+
force_download = False
|
22 |
+
device = "cpu"
|
23 |
+
TARGET_RETURN = -2500 # vllt Vector aus 5 Werten
|
24 |
+
# mean and std computed from training dataset these are available in the model card for each model.
|
25 |
+
|
26 |
+
state_mean = np.array(
|
27 |
+
[6.525973284621532, 3.9928073981048064, 12.498801233017467, 16.836990550577212, 16.837287388159297,
|
28 |
+
16.83684213167729, 16.837161803003287, 73.00388172165772, 73.00331088023746, 73.00445256307798,
|
29 |
+
73.00331088023746, 208.30597100125584, 208.30597100125584, 208.20287704075807, 208.30597100125584,
|
30 |
+
201.25448110514898, 201.25448110514898, 201.16189062678387, 201.25448110514898, 0.15652765849893777,
|
31 |
+
1.0663012570140091, 0.6994348432433195, 0.5023924181838172, 0.49339119658209996, 0.2731373418679261,
|
32 |
+
0.2731373418679261, 0.2731373418679261, 0.2731373418679261])
|
33 |
+
state_std = np.array(
|
34 |
+
[3.448045414453991, 2.0032677368929734, 6.921673394725967, 3.564552828057008, 3.5647828974724476,
|
35 |
+
3.5643565817901974, 3.564711987899257, 16.480221141108398, 16.480030755727572, 16.480238315742053,
|
36 |
+
16.480030755727565, 292.79094956097464, 292.79094956097464, 292.70528837855596, 292.79094956097543,
|
37 |
+
296.18549714910006, 296.18549714910023, 296.1216266457902, 296.18549714910006, 0.035369600587780235,
|
38 |
+
0.8889958578862672, 1.0171468928300462, 0.40202104980478576, 2.6674362928093682, 0.11780233435944305,
|
39 |
+
0.11780233435944333, 0.11780233435944351, 0.11780233435944402])
|
40 |
+
|
41 |
+
|
42 |
+
def preprocess_states(state_list_of_lists, amount_buildings):
|
43 |
+
for bi in range(amount_buildings):
|
44 |
+
for si in range(Constants.state_dim):
|
45 |
+
state_list_of_lists[bi][si] = (state_list_of_lists[bi][si] - Constants.state_mean[si]) / Constants.state_std[si]
|
46 |
+
|
47 |
+
return state_list_of_lists
|
48 |
+
|
49 |
+
|
50 |
+
def evaluate():
|
51 |
+
print("========================= Start Evaluation ========================")
|
52 |
+
print("==> Model:", Constants.load_model)
|
53 |
+
print()
|
54 |
+
|
55 |
+
env = CityLearnEnv(schema=Constants.schema_path)
|
56 |
+
|
57 |
+
agent = MyDecisionTransformer(load_from=Constants.load_model, force_download=Constants.force_download,
|
58 |
+
device=Constants.device)
|
59 |
+
|
60 |
+
context_length = agent.model.config.max_length
|
61 |
+
amount_buildings = len(env.buildings)
|
62 |
+
|
63 |
+
scale = 1000.0 # normalization for rewards/returns
|
64 |
+
target_return = Constants.TARGET_RETURN / scale
|
65 |
+
|
66 |
+
print("Target Return:", Constants.TARGET_RETURN)
|
67 |
+
print("Context Length:", context_length)
|
68 |
+
|
69 |
+
# Initialize Tensors
|
70 |
+
episode_return = np.zeros(amount_buildings)
|
71 |
+
state_list_of_lists = env.reset()
|
72 |
+
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
|
73 |
+
|
74 |
+
state_list_of_tensors = []
|
75 |
+
target_return_list_of_tensors = []
|
76 |
+
action_list_of_tensors = []
|
77 |
+
reward_list_of_tensors = []
|
78 |
+
|
79 |
+
for bi in range(amount_buildings):
|
80 |
+
state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to(
|
81 |
+
device=Constants.device,
|
82 |
+
dtype=torch.float32)
|
83 |
+
target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1, 1)
|
84 |
+
action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32)
|
85 |
+
reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32)
|
86 |
+
|
87 |
+
state_list_of_tensors.append(state_bi)
|
88 |
+
target_return_list_of_tensors.append(target_return_bi)
|
89 |
+
action_list_of_tensors.append(action_bi)
|
90 |
+
reward_list_of_tensors.append(reward_bi)
|
91 |
+
|
92 |
+
timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1)
|
93 |
+
# print(state_list_of_tensors) Liste mit 5 Tensoren, jeder Tensor enthält einen State s der Länge 28
|
94 |
+
# print(action_list_of_tensors) Liste mit 5 leeren Tensoren mit size (0,1)
|
95 |
+
# print(reward_list_of_tensors) Liste mit 5 leeren Tensoren ohne size
|
96 |
+
# print(target_return_list_of_tensors) Liste mit 5 leeren Tensoren, jeder Tensor enthält den target_return / scale
|
97 |
+
# print(timesteps) enthält einen Tensor mit 0: tensor([[0]])
|
98 |
+
|
99 |
+
episodes_completed = 0
|
100 |
+
num_steps = 0
|
101 |
+
t = 0
|
102 |
+
agent_time_elapsed = 0
|
103 |
+
episode_metrics = []
|
104 |
+
|
105 |
+
while True:
|
106 |
+
|
107 |
+
next_actions = []
|
108 |
+
for bi in range(amount_buildings):
|
109 |
+
action_list_of_tensors[bi] = torch.cat(
|
110 |
+
[action_list_of_tensors[bi], torch.zeros((1, Constants.action_dim), device=Constants.device)], dim=0)
|
111 |
+
reward_list_of_tensors[bi] = torch.cat(
|
112 |
+
[reward_list_of_tensors[bi], torch.zeros(1, device=Constants.device)])
|
113 |
+
|
114 |
+
# get actions for all buildings
|
115 |
+
step_start = time.perf_counter()
|
116 |
+
action_bi = agent.get_action(
|
117 |
+
state_list_of_tensors[bi],
|
118 |
+
action_list_of_tensors[bi],
|
119 |
+
reward_list_of_tensors[bi],
|
120 |
+
target_return_list_of_tensors[bi],
|
121 |
+
timesteps,
|
122 |
+
)
|
123 |
+
agent_time_elapsed += time.perf_counter() - step_start
|
124 |
+
|
125 |
+
action_list_of_tensors[bi][-1] = action_bi
|
126 |
+
action_bi = action_bi.detach().cpu().numpy()
|
127 |
+
next_actions.append(action_bi)
|
128 |
+
|
129 |
+
# Interaction with the environment
|
130 |
+
state_list_of_lists, reward_list_of_lists, done, _ = env.step(next_actions)
|
131 |
+
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
|
132 |
+
|
133 |
+
if done:
|
134 |
+
episodes_completed += 1
|
135 |
+
metrics_t = env.evaluate()
|
136 |
+
metrics = {"price_cost": metrics_t[0], "emmision_cost": metrics_t[1], "grid_cost": metrics_t[2]}
|
137 |
+
if np.any(np.isnan(metrics_t)):
|
138 |
+
raise ValueError("Episode metrics are nan, please contant organizers")
|
139 |
+
episode_metrics.append(metrics)
|
140 |
+
print(f"Episode complete: {episodes_completed} | Latest episode metrics: {metrics}", )
|
141 |
+
print("Episode Return:", episode_return)
|
142 |
+
|
143 |
+
# new Initialization and env Reset
|
144 |
+
t = 0
|
145 |
+
episode_return = np.zeros(amount_buildings)
|
146 |
+
state_list_of_lists = env.reset()
|
147 |
+
state_list_of_lists = preprocess_states(state_list_of_lists, amount_buildings)
|
148 |
+
|
149 |
+
state_list_of_tensors = []
|
150 |
+
target_return_list_of_tensors = []
|
151 |
+
action_list_of_tensors = []
|
152 |
+
reward_list_of_tensors = []
|
153 |
+
|
154 |
+
for bi in range(amount_buildings):
|
155 |
+
state_bi = torch.from_numpy(np.array(state_list_of_lists[bi])).reshape(1, Constants.state_dim).to(
|
156 |
+
device=Constants.device, dtype=torch.float32)
|
157 |
+
target_return_bi = torch.tensor(target_return, device=Constants.device, dtype=torch.float32).reshape(1,
|
158 |
+
1)
|
159 |
+
action_bi = torch.zeros((0, Constants.action_dim), device=Constants.device, dtype=torch.float32)
|
160 |
+
reward_bi = torch.zeros(0, device=Constants.device, dtype=torch.float32)
|
161 |
+
|
162 |
+
state_list_of_tensors.append(state_bi)
|
163 |
+
target_return_list_of_tensors.append(target_return_bi)
|
164 |
+
action_list_of_tensors.append(action_bi)
|
165 |
+
reward_list_of_tensors.append(reward_bi)
|
166 |
+
|
167 |
+
timesteps = torch.tensor(0, device=Constants.device, dtype=torch.long).reshape(1, 1)
|
168 |
+
|
169 |
+
else:
|
170 |
+
# Process data for next step
|
171 |
+
for bi in range(amount_buildings):
|
172 |
+
cur_state = torch.from_numpy(np.array(state_list_of_lists[bi])).to(device=Constants.device).reshape(1,
|
173 |
+
Constants.state_dim)
|
174 |
+
state_list_of_tensors[bi] = torch.cat([state_list_of_tensors[bi], cur_state], dim=0)
|
175 |
+
reward_list_of_tensors[bi][-1] = reward_list_of_lists[bi]
|
176 |
+
|
177 |
+
pred_return = target_return_list_of_tensors[bi][0, -1] - (reward_list_of_lists[bi] / scale)
|
178 |
+
target_return_list_of_tensors[bi] = torch.cat(
|
179 |
+
[target_return_list_of_tensors[bi], pred_return.reshape(1, 1)], dim=1)
|
180 |
+
|
181 |
+
episode_return[bi] += reward_list_of_lists[bi]
|
182 |
+
|
183 |
+
timesteps = torch.cat([timesteps, torch.ones((1, 1), device=Constants.device, dtype=torch.long) * (t + 1)],
|
184 |
+
dim=1)
|
185 |
+
|
186 |
+
if timesteps.size(dim=1) > context_length:
|
187 |
+
# Store only the last values according to context_length
|
188 |
+
timesteps = timesteps[:, -context_length:]
|
189 |
+
for bi in range(amount_buildings):
|
190 |
+
state_list_of_tensors[bi] = state_list_of_tensors[bi][-context_length:]
|
191 |
+
action_list_of_tensors[bi] = action_list_of_tensors[bi][-context_length:]
|
192 |
+
reward_list_of_tensors[bi] = reward_list_of_tensors[bi][-context_length:]
|
193 |
+
target_return_list_of_tensors[bi] = target_return_list_of_tensors[bi][:, -context_length:]
|
194 |
+
|
195 |
+
num_steps += 1
|
196 |
+
t += 1
|
197 |
+
if num_steps % 100 == 0:
|
198 |
+
print(f"Num Steps: {num_steps}, Num episodes: {episodes_completed}")
|
199 |
+
|
200 |
+
if episodes_completed >= Constants.episodes:
|
201 |
+
break
|
202 |
+
|
203 |
+
print("========================= Evaluation Done ========================")
|
204 |
+
print("Total number of steps:", num_steps)
|
205 |
+
if len(episode_metrics) > 0:
|
206 |
+
price_cost = np.mean([e['price_cost'] for e in episode_metrics])
|
207 |
+
emission_cost = np.mean([e['emmision_cost'] for e in episode_metrics])
|
208 |
+
grid_cost = np.mean([e['grid_cost'] for e in episode_metrics])
|
209 |
+
print("Average Price Cost:", price_cost)
|
210 |
+
print("Average Emission Cost:", emission_cost)
|
211 |
+
print("Average Grid Cost:", grid_cost)
|
212 |
+
print("==>", (price_cost+emission_cost+grid_cost)/3)
|
213 |
+
print(f"Total time taken by agent: {agent_time_elapsed}s")
|
214 |
+
|
215 |
+
|
216 |
+
if __name__ == '__main__':
|
217 |
+
evaluate()
|