TobiTob commited on
Commit
6760541
1 Parent(s): a35e4bd

Update CityLearn.py

Browse files
Files changed (1) hide show
  1. CityLearn.py +10 -45
CityLearn.py CHANGED
@@ -3,24 +3,17 @@ import datasets
3
  import numpy as np
4
 
5
  _DESCRIPTION = """The dataset consists of tuples of (observations, actions, rewards, dones) sampled by agents
6
- interacting with the CityLearn 2022 Phase 1 environment"""
7
 
8
  _BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
9
  _URLS = {
10
- "s_test": f"{_BASE_URL}/s_test.pkl",
11
- "s_week": f"{_BASE_URL}/s_week.pkl",
12
- "s_month": f"{_BASE_URL}/s_month.pkl",
13
- "s_random": f"{_BASE_URL}/s_random.pkl",
14
- "s_random2": f"{_BASE_URL}/s_random2.pkl",
15
- "s_random3": f"{_BASE_URL}/s_random3.pkl",
16
- "s_random4": f"{_BASE_URL}/s_random4.pkl",
17
  "random_230": f"{_BASE_URL}/random_230x5x38.pkl",
18
  "f_230": f"{_BASE_URL}/f_230x5x38.pkl",
19
  "f_50": f"{_BASE_URL}/f_50x5x1750.pkl",
20
  "f_24": f"{_BASE_URL}/f_24x5x364.pkl",
21
  "fr_24": f"{_BASE_URL}/fr_24x5x364.pkl",
22
  "fn_24": f"{_BASE_URL}/fn_24x5x3649.pkl",
23
- "fnn_230": f"{_BASE_URL}/fnn_230x5x380.pkl",
24
  "rb_24": f"{_BASE_URL}/rb_24x5x364.pkl",
25
  "rb_50": f"{_BASE_URL}/rb_50x5x175.pkl",
26
  "rb_108": f"{_BASE_URL}/rb_108x5x81.pkl",
@@ -37,61 +30,33 @@ class DecisionTransformerCityLearnDataset(datasets.GeneratorBasedBuilder):
37
  # You will be able to load one configuration in the following list with
38
  # data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
39
  BUILDER_CONFIGS = [
40
- datasets.BuilderConfig(
41
- name="s_test",
42
- description="Small dataset sampled from an expert policy in CityLearn environment. Data size 10x8",
43
- ),
44
- datasets.BuilderConfig(
45
- name="s_week",
46
- description="Data sampled from an expert policy in CityLearn environment. Data size 260x168",
47
- ),
48
- datasets.BuilderConfig(
49
- name="s_month",
50
- description="Data sampled from an expert policy in CityLearn environment. Data size 60x720",
51
- ),
52
- datasets.BuilderConfig(
53
- name="s_random",
54
- description="Random environment interactions in CityLearn environment. Data size 950x461",
55
- ),
56
- datasets.BuilderConfig(
57
- name="s_random2",
58
- description="Random environment interactions in CityLearn environment. Data size 43795x10",
59
- ),
60
- datasets.BuilderConfig(
61
- name="s_random3",
62
- description="Random environment interactions in CityLearn environment. Data size 23050x19",
63
- ),
64
- datasets.BuilderConfig(
65
- name="s_random4",
66
- description="Random environment interactions in CityLearn environment. Data size 437950x1",
67
- ),
68
  datasets.BuilderConfig(
69
  name="random_230",
70
- description="Random environment interactions in CityLearn environment. Sequence length = 230, Buildings = 5, Episodes = 1 ",
71
  ),
72
  datasets.BuilderConfig(
73
  name="f_230",
74
- description="Data sampled from an expert policy in CityLearn environment. Sequence length = 230, Buildings = 5, Episodes = 1 ",
75
  ),
76
  datasets.BuilderConfig(
77
  name="f_50",
78
- description="Data sampled from an expert policy in CityLearn environment. Sequence length = 50, Buildings = 5, Episodes = 10 ",
79
  ),
80
  datasets.BuilderConfig(
81
  name="f_24",
82
- description="Data sampled from an expert policy in CityLearn environment. Sequence length = 24, Buildings = 5, Episodes = 1 ",
83
  ),
84
  datasets.BuilderConfig(
85
  name="fr_24",
86
- description="Data sampled from an expert policy in CityLearn environment. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
87
  ),
88
  datasets.BuilderConfig(
89
  name="fn_24",
90
- description="Data sampled from an expert policy in CityLearn environment. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 10 ",
91
  ),
92
  datasets.BuilderConfig(
93
- name="fnn_230",
94
- description="Data sampled from an expert policy in CityLearn environment. Used the new reward function and changed some interactions with noise. Sequence length = 230, Buildings = 5, Episodes = 10 ",
95
  ),
96
  datasets.BuilderConfig(
97
  name="rb_24",
 
3
  import numpy as np
4
 
5
  _DESCRIPTION = """The dataset consists of tuples of (observations, actions, rewards, dones) sampled by agents
6
+ interacting with the CityLearn 2022 Phase 1 environment (only first 5 buildings)"""
7
 
8
  _BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
9
  _URLS = {
 
 
 
 
 
 
 
10
  "random_230": f"{_BASE_URL}/random_230x5x38.pkl",
11
  "f_230": f"{_BASE_URL}/f_230x5x38.pkl",
12
  "f_50": f"{_BASE_URL}/f_50x5x1750.pkl",
13
  "f_24": f"{_BASE_URL}/f_24x5x364.pkl",
14
  "fr_24": f"{_BASE_URL}/fr_24x5x364.pkl",
15
  "fn_24": f"{_BASE_URL}/fn_24x5x3649.pkl",
16
+ "fn_230": f"{_BASE_URL}/fnn_230x5x380.pkl",
17
  "rb_24": f"{_BASE_URL}/rb_24x5x364.pkl",
18
  "rb_50": f"{_BASE_URL}/rb_50x5x175.pkl",
19
  "rb_108": f"{_BASE_URL}/rb_108x5x81.pkl",
 
30
  # You will be able to load one configuration in the following list with
31
  # data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
32
  BUILDER_CONFIGS = [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  datasets.BuilderConfig(
34
  name="random_230",
35
+ description="Random environment interactions. Sequence length = 230, Buildings = 5, Episodes = 1 ",
36
  ),
37
  datasets.BuilderConfig(
38
  name="f_230",
39
+ description="Data sampled from an expert LSTM policy. Sequence length = 230, Buildings = 5, Episodes = 1 ",
40
  ),
41
  datasets.BuilderConfig(
42
  name="f_50",
43
+ description="Data sampled from an expert LSTM policy with 10 episodes of repetition. Sequence length = 50, Buildings = 5, Episodes = 10 ",
44
  ),
45
  datasets.BuilderConfig(
46
  name="f_24",
47
+ description="Data sampled from an expert LSTM policy. Used the old reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
48
  ),
49
  datasets.BuilderConfig(
50
  name="fr_24",
51
+ description="Data sampled from an expert LSTM policy. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
52
  ),
53
  datasets.BuilderConfig(
54
  name="fn_24",
55
+ description="Data sampled from an expert LSTM policy, extended with noise. Sequence length = 24, Buildings = 5, Episodes = 10 ",
56
  ),
57
  datasets.BuilderConfig(
58
+ name="fn_230",
59
+ description="Data sampled from an expert LSTM policy, extended with noise. Sequence length = 230, Buildings = 5, Episodes = 10 ",
60
  ),
61
  datasets.BuilderConfig(
62
  name="rb_24",