from ast import Raise from re import S import re import gym import matplotlib.pyplot as plt from citylearn.citylearn import CityLearnEnv import numpy as np import pandas as pd import os from collections import deque import argparse import random # import logger import logging from sys import stdout from copy import deepcopy class Constants: episodes = 3 schema_path = '/home/aicrowd/data/citylearn_challenge_2022_phase_1/schema.json' variables_to_forecast = ['solar_generation', 'non_shiftable_load', 'electricity_pricing', 'carbon_intensity', "electricity_consumption_crude", 'hour', 'month'] additional_variable = ['hour', "month"] # create env from citylearn env = CityLearnEnv(schema=Constants.schema_path) def action_space_to_dict(aspace): """ Only for box space """ return { "high": aspace.high, "low": aspace.low, "shape": aspace.shape, "dtype": str(aspace.dtype) } def env_reset(env): observations = env.reset() action_space = env.action_space observation_space = env.observation_space building_info = env.get_building_information() building_info = list(building_info.values()) action_space_dicts = [action_space_to_dict(asp) for asp in action_space] observation_space_dicts = [action_space_to_dict(osp) for osp in observation_space] obs_dict = {"action_space": action_space_dicts, "observation_space": observation_space_dicts, "building_info": building_info, "observation": observations } return obs_dict ## env wrapper for stable baselines class EnvCityGym(gym.Env): """ Env wrapper coming from the gym library. """ def __init__(self, env): self.env = env # get the number of buildings self.num_buildings = len(env.action_space) print("num_buildings: ", self.num_buildings) self.action_space = gym.spaces.Box(low=np.array([-0.2]), high=np.array([0.2]), dtype=np.float32) self.observation_space = gym.spaces.MultiDiscrete(np.array([25, 13])) def reset(self): obs_dict = env_reset(self.env) obs = self.env.reset() observation = [o for o in obs] return observation def step(self, action): """ we apply the same action for all the buildings """ obs, reward, done, info = self.env.step(action) observation = [o for o in obs] return observation, reward, done, info def render(self, mode='human'): return self.env.render(mode) def env_run_without_action(actions_all=None): """ This function is used to run the environment without applying any action. and return the dataset """ # create env from citylearn env = CityLearnEnv(schema=Constants.schema_path) # get the number of buildings num_buildings = len(env.action_space) print("num_buildings: ", num_buildings) # create env wrapper env = EnvCityGym(env) # reset the environment obs = env.reset() infos = [] for id_building in range(num_buildings): # run the environment obs = env.reset() for i in range(8759): info_tmp = env.env.buildings[id_building].observations.copy() if actions_all is not None: action = [[actions_all[i + 8759 * b]] for b in range(num_buildings)] else: # we get the action action = np.zeros((5, )) # 5 is the number of buildings # reshape action into form like [[0], [0], [0], [0], [0]] action = [[a] for a in action] #print(action) obs, reward, done, info = env.step(action) info_tmp['reward'] = reward[id_building] info_tmp['building_id'] = id_building infos.append(info_tmp) if done: obs = env.reset() # create the data data_pd = {} for info in infos: for i, v in info.items(): try: data_pd[i].append(v) except: data_pd[i] = [v] data = pd.DataFrame(infos) return data if __name__ == "__main__": # data generation data = env_run_without_action() # we only normalize month and hour data['hour'] = data['hour']/24 data['month'] = data['month']/12 # save the data into the data_histo folder into parquet format data.to_parquet("data_histo/data.parquet")