Upload pmc_open_access_section.py
Browse files- pmc_open_access_section.py +391 -0
pmc_open_access_section.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# This dataset script is based on pmc/open_access.py loading script.
|
17 |
+
|
18 |
+
"""PMC Open Access Subset sections parsed (plain text)"""
|
19 |
+
|
20 |
+
import datetime
|
21 |
+
import pandas as pd
|
22 |
+
import numpy as np
|
23 |
+
from itertools import compress, chain
|
24 |
+
from collections import defaultdict
|
25 |
+
import re
|
26 |
+
from lxml import etree
|
27 |
+
import json
|
28 |
+
import html
|
29 |
+
import unicodedata
|
30 |
+
|
31 |
+
import datasets
|
32 |
+
from datasets.tasks import LanguageModeling
|
33 |
+
|
34 |
+
|
35 |
+
# TODO: Add BibTeX citation
|
36 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
37 |
+
_CITATION = ""
|
38 |
+
|
39 |
+
_DESCRIPTION = """\
|
40 |
+
The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under
|
41 |
+
license terms that allow reuse.
|
42 |
+
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
|
43 |
+
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
|
44 |
+
liberal redistribution and reuse than a traditional copyrighted work.
|
45 |
+
The PMC Open Access Subset is one part of the PMC Article Datasets
|
46 |
+
|
47 |
+
This version takes XML version as source, benefiting from the structured text
|
48 |
+
to split the articles in sections, naming the introduction, methods, results,
|
49 |
+
discussion and conclusion, front, body and back. XML is then removed and format
|
50 |
+
it to plain text.
|
51 |
+
"""
|
52 |
+
|
53 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/"
|
54 |
+
|
55 |
+
# TODO: Add the licence for the dataset here if you can find it
|
56 |
+
_LICENSE = """
|
57 |
+
https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
|
58 |
+
|
59 |
+
Within the PMC Open Access Subset, there are three groupings:
|
60 |
+
|
61 |
+
Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
|
62 |
+
Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
|
63 |
+
Other - no machine-readable Creative Commons license, no license, or a custom license.
|
64 |
+
"""
|
65 |
+
|
66 |
+
_URL_ROOT = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/"
|
67 |
+
_URL = _URL_ROOT+"oa_bulk/{subset}/xml/"
|
68 |
+
|
69 |
+
_SUBSETS = {
|
70 |
+
"commercial": "oa_comm",
|
71 |
+
"non_commercial": "oa_noncomm",
|
72 |
+
"other": "oa_other",
|
73 |
+
}
|
74 |
+
_BASELINE_DATE = "2022-11-18"
|
75 |
+
|
76 |
+
begin_doc_rgx = re.compile("""<!DOCTYPE.*""")
|
77 |
+
def clean_raw(xml_text):
|
78 |
+
"""
|
79 |
+
Fixes the formating of xml of files and returns it.
|
80 |
+
Some have bad formating but they can be fixed/improved
|
81 |
+
"""
|
82 |
+
#Some XML can't be parsed because they are not starting with the DOCTYPE declaration
|
83 |
+
# Could be disabled if we handle the parsing error (TBD, how many files would be trashed)
|
84 |
+
|
85 |
+
begin_doc = begin_doc_rgx.search(xml_text)
|
86 |
+
xml_text = xml_text[begin_doc.start():]
|
87 |
+
|
88 |
+
#Some XML are poisoned with consecutive tabs and new lines
|
89 |
+
xml_text = re.sub('\s+',' ',xml_text)
|
90 |
+
return xml_text
|
91 |
+
|
92 |
+
def construct_datadict(article_tree):
|
93 |
+
"""
|
94 |
+
Where the magic happens. A long script that:
|
95 |
+
- Remove the references (and what is referenced to) from the text
|
96 |
+
- Extract paragraphs and titles with their path in the document
|
97 |
+
- Titles are used to identify ["introduction", "methods", "results" and "discussion"]
|
98 |
+
- The path are then used to group paragraphs and titles into corresponding content.
|
99 |
+
- Remaining p and title are put in three other section: front, body, back
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
- content_d: Dictionnary with the content result
|
103 |
+
|
104 |
+
Useful information about the tags can be found here: https://jats.nlm.nih.gov/archiving/tag-library/1.3/
|
105 |
+
"""
|
106 |
+
res_content_d = {}
|
107 |
+
|
108 |
+
refs_el = article_tree.find(".//ref-list")
|
109 |
+
if refs_el is not None:
|
110 |
+
refs_el.getparent().remove(refs_el)
|
111 |
+
|
112 |
+
# One big query is faster than multiple small ones
|
113 |
+
ref_el_l = article_tree.xpath(".//fig|.//table-wrap|.//array|.//supplementary-material\
|
114 |
+
|.//inline-supplementary-material|.//disp-formula\
|
115 |
+
|.//inline-formula|.//graphic|.//inline-graphic\
|
116 |
+
|.//media|.//inline-media|.//boxed-text\
|
117 |
+
|.//table-wrap-foot|.//fn-group|.//chem-struct-wrap\
|
118 |
+
|.//code|.//disp-quote|.//speech")
|
119 |
+
for el in ref_el_l[::-1]:
|
120 |
+
repl_xref = etree.Element("xref")
|
121 |
+
repl_xref.tail = el.tail
|
122 |
+
el.addprevious(repl_xref)
|
123 |
+
el.getparent().remove(el)
|
124 |
+
|
125 |
+
path_l, text_l = [], []
|
126 |
+
t_paths, t_texts_lowcase = [], []
|
127 |
+
for part in ["front", "body", "back"]: #Iterate parts and insert first front and back
|
128 |
+
tmp_path_l, tmp_text_l = [], []
|
129 |
+
tmp_t_paths, tmp_t_texts_lowcase = [], []
|
130 |
+
part_el = article_tree.find(".//"+part)
|
131 |
+
if part_el is None:
|
132 |
+
res_content_d[part] = []
|
133 |
+
continue
|
134 |
+
#Only the outermost p are kept, to prevent duplication.
|
135 |
+
#Also seen title with p inside. not(ancestor::title) prevents duplication of that p
|
136 |
+
for el in part_el.xpath(".//p[not(ancestor::p) and not(ancestor::title)]| .//title[not(ancestor::p) and not(ancestor::title)]"):
|
137 |
+
new_text = " ".join(el.itertext())
|
138 |
+
new_text = unicodedata.normalize("NFKD", html.unescape(new_text))
|
139 |
+
tmp_path_l.append(article_tree.getelementpath(el))
|
140 |
+
tmp_text_l.append(new_text)
|
141 |
+
if el.tag=="title":
|
142 |
+
tmp_t_paths.append(tmp_path_l[-1])
|
143 |
+
tmp_t_texts_lowcase.append(new_text.lower())
|
144 |
+
if part=="body": #We keep the body for processing right bellow.
|
145 |
+
path_l, text_l = tmp_path_l, tmp_text_l
|
146 |
+
t_paths, t_texts_lowcase = tmp_t_paths, tmp_t_texts_lowcase
|
147 |
+
else:
|
148 |
+
res_content_d[part] = tmp_text_l
|
149 |
+
|
150 |
+
# Figuring from the titles which are the different categories
|
151 |
+
mask_intro = np.array(["introduction" in t_text or "background" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
152 |
+
mask_metho = np.array(["method" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
153 |
+
mask_resul = np.array(["result" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
154 |
+
mask_discu = np.array(["discussion" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
155 |
+
mask_concl = np.array(["conclusion" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
156 |
+
processed_mask = np.zeros(len(text_l), dtype="bool")
|
157 |
+
for mask, name_section in zip([mask_intro, mask_metho, mask_resul, mask_discu, mask_concl],
|
158 |
+
["introduction", "methods", "results", "discussion", "conclusion"]):
|
159 |
+
if not np.any(mask):
|
160 |
+
res_content_d[name_section] = []
|
161 |
+
continue
|
162 |
+
|
163 |
+
filtered_path_l = list(compress(t_paths, mask))
|
164 |
+
levels = np.array([len(path.split("/")) for path in filtered_path_l])
|
165 |
+
root_path = filtered_path_l[np.argmin(levels)]
|
166 |
+
root_path = root_path[:root_path.rindex("/")]
|
167 |
+
mask_contents = np.array([path.startswith(root_path) for path in path_l]).astype(bool)
|
168 |
+
processed_mask |= mask_contents
|
169 |
+
res_content_d[name_section] = list(compress(text_l, mask_contents))
|
170 |
+
|
171 |
+
processed_mask = ~processed_mask #Finally, add the body part as everything that don't belong to previous categories
|
172 |
+
res_content_d["body"] = list(compress(text_l, processed_mask))
|
173 |
+
|
174 |
+
return res_content_d
|
175 |
+
|
176 |
+
class OpenAccessXMLConfig(datasets.BuilderConfig):
|
177 |
+
"""BuilderConfig for the PMC Open Access Subset."""
|
178 |
+
|
179 |
+
def __init__(self, subsets=None, **kwargs):
|
180 |
+
"""BuilderConfig for the PMC Open Access Subset.
|
181 |
+
Args:
|
182 |
+
subsets (:obj:`List[str]`): List of subsets/groups to load.
|
183 |
+
**kwargs: Keyword arguments forwarded to super.
|
184 |
+
"""
|
185 |
+
subsets = [subsets] if isinstance(subsets, str) else subsets
|
186 |
+
super().__init__(
|
187 |
+
name="+".join(subsets), **kwargs,
|
188 |
+
)
|
189 |
+
self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys())
|
190 |
+
|
191 |
+
|
192 |
+
class OpenAccessXML(datasets.GeneratorBasedBuilder):
|
193 |
+
"""PMC Open Access Subset enriched from XML files."""
|
194 |
+
|
195 |
+
VERSION = datasets.Version("1.0.0")
|
196 |
+
BUILDER_CONFIG_CLASS = OpenAccessXMLConfig
|
197 |
+
BUILDER_CONFIGS = [OpenAccessXMLConfig(subsets="all")] + [OpenAccessXMLConfig(subsets=subset) for subset in _SUBSETS]
|
198 |
+
DEFAULT_CONFIG_NAME = "all"
|
199 |
+
|
200 |
+
def _info(self):
|
201 |
+
return datasets.DatasetInfo(
|
202 |
+
description=_DESCRIPTION,
|
203 |
+
features=datasets.Features(
|
204 |
+
{
|
205 |
+
"accession_id": datasets.Value("string"),
|
206 |
+
"pmid": datasets.Value("string"),
|
207 |
+
|
208 |
+
"introduction": datasets.Value("string"),
|
209 |
+
"methods": datasets.Value("string"),
|
210 |
+
"results": datasets.Value("string"),
|
211 |
+
"discussion": datasets.Value("string"),
|
212 |
+
"conclusion": datasets.Value("string"),
|
213 |
+
|
214 |
+
"front": datasets.Value("string"),
|
215 |
+
"body": datasets.Value("string"),
|
216 |
+
"back": datasets.Value("string"),
|
217 |
+
|
218 |
+
"license": datasets.Value("string"),
|
219 |
+
"retracted": datasets.Value("string"),
|
220 |
+
"last_updated": datasets.Value("string"),
|
221 |
+
"citation": datasets.Value("string"),
|
222 |
+
"package_file": datasets.Value("string"),
|
223 |
+
}
|
224 |
+
),
|
225 |
+
homepage=_HOMEPAGE,
|
226 |
+
license=_LICENSE,
|
227 |
+
citation=_CITATION,
|
228 |
+
task_templates=[LanguageModeling(text_column="content")],
|
229 |
+
)
|
230 |
+
|
231 |
+
def _split_generators(self, dl_manager):
|
232 |
+
|
233 |
+
incremental_paths = {
|
234 |
+
"incremental_file_lists": [],
|
235 |
+
"incremental_archives": []
|
236 |
+
}
|
237 |
+
|
238 |
+
baseline_package_list = dl_manager.download(f"{_URL_ROOT}oa_file_list.csv")
|
239 |
+
|
240 |
+
baseline_file_lists = []
|
241 |
+
baseline_archives = []
|
242 |
+
for subset in self.config.subsets:
|
243 |
+
url = _URL.format(subset=_SUBSETS[subset])
|
244 |
+
basename = f"{_SUBSETS[subset]}_xml."
|
245 |
+
# Baselines non-commercial PMC000xxxxxx baseline does not exist
|
246 |
+
baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(10) if (subset != "non_commercial" or i > 0)]
|
247 |
+
|
248 |
+
for baseline in baselines:
|
249 |
+
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
|
250 |
+
baseline_archive_url = f"{url}{basename}{baseline}.tar.gz"
|
251 |
+
baseline_file_list = dl_manager.download(baseline_file_list_url)
|
252 |
+
baseline_archive = dl_manager.download(baseline_archive_url)
|
253 |
+
|
254 |
+
baseline_file_lists.append(baseline_file_list)
|
255 |
+
baseline_archives.append(baseline_archive)
|
256 |
+
|
257 |
+
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
|
258 |
+
|
259 |
+
# Incremental commented because some articles are already in the main parts (updates?)
|
260 |
+
# Need to find a way to add them to the dataset without duplicating the articles.
|
261 |
+
# Also adding them would mean that each new day the dataset is loaded, the whole dataset is recreated.
|
262 |
+
date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE)
|
263 |
+
incremental_dates = [
|
264 |
+
(datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat()
|
265 |
+
for i in range(date_delta.days)
|
266 |
+
]
|
267 |
+
incrementals = [f"incr.{date}" for date in incremental_dates]
|
268 |
+
for incremental in incrementals:
|
269 |
+
incremental_file_list_url = f"{url}{basename}{incremental}.filelist.csv"
|
270 |
+
incremental_archive_url = f"{url}{basename}{incremental}.tar.gz"
|
271 |
+
try:
|
272 |
+
incremental_file_list = dl_manager.download(incremental_file_list_url)
|
273 |
+
incremental_archive = dl_manager.download(incremental_archive_url)
|
274 |
+
except FileNotFoundError: # Some increment might not exist
|
275 |
+
continue
|
276 |
+
incremental_paths["incremental_file_lists"].append(incremental_file_list)
|
277 |
+
incremental_paths["incremental_archives"].append(incremental_archive)
|
278 |
+
|
279 |
+
return [
|
280 |
+
datasets.SplitGenerator(
|
281 |
+
name=datasets.Split.TRAIN,
|
282 |
+
gen_kwargs={
|
283 |
+
"baseline_file_lists": baseline_file_lists,
|
284 |
+
"baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives],
|
285 |
+
"baseline_package_list": baseline_package_list,
|
286 |
+
"incremental_file_lists": incremental_paths["incremental_file_lists"],
|
287 |
+
"incremental_archives": [dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"]],
|
288 |
+
},
|
289 |
+
),
|
290 |
+
]
|
291 |
+
|
292 |
+
def _generate_examples(self, baseline_file_lists, baseline_archives, baseline_package_list, incremental_file_lists, incremental_archives):
|
293 |
+
#Loading the file listing folders of individual PMC Article package (with medias and graphics)
|
294 |
+
oa_package_list = pd.read_csv(baseline_package_list, index_col="Accession ID")
|
295 |
+
oa_package_list = oa_package_list[["File"]]
|
296 |
+
oa_package_list.sort_index(inplace=True)
|
297 |
+
processed_ids = set()
|
298 |
+
|
299 |
+
# Incrementals
|
300 |
+
if incremental_file_lists:
|
301 |
+
for incremental_file_list, incremental_archive in zip(incremental_file_lists[::-1], incremental_archives[::-1]):
|
302 |
+
try:
|
303 |
+
incrementals = pd.read_csv(incremental_file_list, index_col="AccessionID")
|
304 |
+
except FileNotFoundError: # File not found can happen here in stream mode
|
305 |
+
continue
|
306 |
+
incrementals = incrementals.join(oa_package_list).reset_index().set_index("Article File")
|
307 |
+
incrementals.File = incrementals.File.fillna('')
|
308 |
+
incrementals = incrementals.to_dict(orient="index")
|
309 |
+
|
310 |
+
for path, file in incremental_archive:
|
311 |
+
data = incrementals.pop(path)
|
312 |
+
pmcid = data["AccessionID"]
|
313 |
+
if pmcid in processed_ids: #oa_package_list.loc[pmcid, "yet_processed"]:
|
314 |
+
continue
|
315 |
+
content = file.read()
|
316 |
+
try:
|
317 |
+
text = content.decode("utf-8").strip()
|
318 |
+
except UnicodeDecodeError as e:
|
319 |
+
text = content.decode("latin-1").strip()
|
320 |
+
text = clean_raw(text)
|
321 |
+
try:
|
322 |
+
article_tree = etree.ElementTree(etree.fromstring(text))
|
323 |
+
except etree.XMLSyntaxError: #In some files, xml is broken
|
324 |
+
continue
|
325 |
+
|
326 |
+
content_d = construct_datadict(article_tree)
|
327 |
+
data = {
|
328 |
+
"introduction": "\n".join(content_d["introduction"]),
|
329 |
+
"methods": "\n".join(content_d["methods"]),
|
330 |
+
"results": "\n".join(content_d["results"]),
|
331 |
+
"discussion": "\n".join(content_d["discussion"]),
|
332 |
+
"conclusion": "\n".join(content_d["conclusion"]),
|
333 |
+
"front": "\n".join(content_d["front"]),
|
334 |
+
"body": "\n".join(content_d["body"]),
|
335 |
+
"back": "\n".join(content_d["back"]),
|
336 |
+
"pmid": data["PMID"],
|
337 |
+
"accession_id": pmcid,
|
338 |
+
"license": data["License"],
|
339 |
+
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
340 |
+
"retracted": data["Retracted"],
|
341 |
+
"citation": data["Article Citation"],
|
342 |
+
"package_file": data["File"],
|
343 |
+
}
|
344 |
+
processed_ids.add(pmcid)
|
345 |
+
yield pmcid, data
|
346 |
+
|
347 |
+
# Baselines
|
348 |
+
for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives):
|
349 |
+
|
350 |
+
#try:
|
351 |
+
baselines = pd.read_csv(baseline_file_list, index_col="AccessionID")
|
352 |
+
baselines = baselines.join(oa_package_list).reset_index().set_index("Article File")
|
353 |
+
baselines.File = baselines.File.fillna('')
|
354 |
+
baselines = baselines.to_dict(orient="index")
|
355 |
+
|
356 |
+
for path, file in baseline_archive:
|
357 |
+
data = baselines.pop(path)
|
358 |
+
pmcid = data["AccessionID"]
|
359 |
+
if pmcid in processed_ids:
|
360 |
+
continue
|
361 |
+
content = file.read()
|
362 |
+
try:
|
363 |
+
text = content.decode("utf-8").strip()
|
364 |
+
except UnicodeDecodeError as e:
|
365 |
+
text = content.decode("latin-1").strip()
|
366 |
+
text = clean_raw(text)
|
367 |
+
try:
|
368 |
+
article_tree = etree.ElementTree(etree.fromstring(text))
|
369 |
+
except etree.XMLSyntaxError: #In some files, xml is broken
|
370 |
+
continue
|
371 |
+
|
372 |
+
content_d = construct_datadict(article_tree)
|
373 |
+
data = {
|
374 |
+
"introduction": "\n".join(content_d["introduction"]),
|
375 |
+
"methods": "\n".join(content_d["methods"]),
|
376 |
+
"results": "\n".join(content_d["results"]),
|
377 |
+
"discussion": "\n".join(content_d["discussion"]),
|
378 |
+
"conclusion": "\n".join(content_d["conclusion"]),
|
379 |
+
"front": "\n".join(content_d["front"]),
|
380 |
+
"body": "\n".join(content_d["body"]),
|
381 |
+
"back": "\n".join(content_d["back"]),
|
382 |
+
"pmid": data["PMID"],
|
383 |
+
"accession_id": pmcid,
|
384 |
+
"license": data["License"],
|
385 |
+
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
386 |
+
"retracted": data["Retracted"],
|
387 |
+
"citation": data["Article Citation"],
|
388 |
+
"package_file": data["File"],
|
389 |
+
}
|
390 |
+
processed_ids.add(pmcid)
|
391 |
+
yield pmcid, data
|