File size: 5,443 Bytes
96033b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747473
96033b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from xml.etree import ElementTree as ET

import datasets

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {ocr-receipts-text-detection},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The Grocery Store Receipts Dataset is a collection of photos captured from various
**grocery store receipts**. This dataset is specifically designed for tasks related to
**Optical Character Recognition (OCR)** and is useful for retail.
Each image in the dataset is accompanied by bounding box annotations, indicating the
precise locations of specific text segments on the receipts. The text segments are
categorized into four classes: **item, store, date_time and total**.
"""
_NAME = "ocr-receipts-text-detection"

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"

_LABELS = ["receipt", "shop", "item", "date_time", "total"]


class OcrReceiptsTextDetection(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "name": datasets.Value("string"),
                    "image": datasets.Image(),
                    "mask": datasets.Image(),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "shapes": datasets.Sequence(
                        {
                            "label": datasets.ClassLabel(
                                num_classes=len(_LABELS),
                                names=_LABELS,
                            ),
                            "type": datasets.Value("string"),
                            "points": datasets.Sequence(
                                datasets.Sequence(
                                    datasets.Value("float"),
                                ),
                            ),
                            "rotation": datasets.Value("float"),
                            "occluded": datasets.Value("uint8"),
                            "attributes": datasets.Sequence(
                                {
                                    "name": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        images = dl_manager.download(f"{_DATA}images.tar.gz")
        masks = dl_manager.download(f"{_DATA}boxes.tar.gz")
        annotations = dl_manager.download(f"{_DATA}annotations.xml")
        images = dl_manager.iter_archive(images)
        masks = dl_manager.iter_archive(masks)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": images,
                    "masks": masks,
                    "annotations": annotations,
                },
            ),
        ]

    @staticmethod
    def parse_shape(shape: ET.Element) -> dict:
        label = shape.get("label")
        shape_type = shape.tag
        rotation = shape.get("rotation", 0.0)
        occluded = shape.get("occluded", 0)

        points = None

        if shape_type == "points":
            points = tuple(map(float, shape.get("points").split(",")))

        elif shape_type == "box":
            points = [
                (float(shape.get("xtl")), float(shape.get("ytl"))),
                (float(shape.get("xbr")), float(shape.get("ybr"))),
            ]

        elif shape_type == "polygon":
            points = [
                tuple(map(float, point.split(",")))
                for point in shape.get("points").split(";")
            ]

        attributes = []

        for attr in shape:
            attr_name = attr.get("name")
            attr_text = attr.text
            attributes.append({"name": attr_name, "text": attr_text})

        shape_data = {
            "label": label,
            "type": shape_type,
            "points": points,
            "rotation": rotation,
            "occluded": occluded,
            "attributes": attributes,
        }

        return shape_data

    def _generate_examples(self, images, masks, annotations):
        tree = ET.parse(annotations)
        root = tree.getroot()

        for idx, (
            (image_path, image),
            (mask_path, mask),
        ) in enumerate(zip(images, masks)):
            image_name = image_path.split("/")[-1]
            img = root.find(f"./image[@name='images/{image_name}']")

            image_id = img.get("id")
            name = img.get("name")
            width = img.get("width")
            height = img.get("height")
            shapes = [self.parse_shape(shape) for shape in img]

            yield idx, {
                "id": image_id,
                "name": name,
                "image": {"path": image_path, "bytes": image.read()},
                "mask": {"path": mask_path, "bytes": mask.read()},
                "width": width,
                "height": height,
                "shapes": shapes,
            }