refactor: csv name feat: upload script
Browse files
data/{outdoor_garbage_dataset.csv → outdoor_garbage.csv}
RENAMED
File without changes
|
outdoor_garbage.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
_CITATION = """\
|
5 |
+
@InProceedings{huggingface:dataset,
|
6 |
+
title = {outdoor_garbage},
|
7 |
+
author = {TrainingDataPro},
|
8 |
+
year = {2023}
|
9 |
+
}
|
10 |
+
"""
|
11 |
+
|
12 |
+
_DESCRIPTION = """\
|
13 |
+
The dataset consisting of garbage cans of various capacities and types.
|
14 |
+
Best to train a neural network to monitor the timely removal of garbage and
|
15 |
+
organize the logistics of vehicles for garbage collection. Dataset is useful
|
16 |
+
for the recommendation systems, optimization and automization the work of
|
17 |
+
community services, smart city.
|
18 |
+
"""
|
19 |
+
_NAME = 'outdoor_garbage'
|
20 |
+
|
21 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
22 |
+
|
23 |
+
_LICENSE = ""
|
24 |
+
|
25 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
26 |
+
|
27 |
+
|
28 |
+
class OutdoorGarbage(datasets.GeneratorBasedBuilder):
|
29 |
+
"""Small sample of image-text pairs"""
|
30 |
+
|
31 |
+
def _info(self):
|
32 |
+
return datasets.DatasetInfo(
|
33 |
+
description=_DESCRIPTION,
|
34 |
+
features=datasets.Features({
|
35 |
+
'image_id': datasets.Value('int32'),
|
36 |
+
'image': datasets.Image(),
|
37 |
+
'annotations': datasets.Value('string')
|
38 |
+
}),
|
39 |
+
supervised_keys=None,
|
40 |
+
homepage=_HOMEPAGE,
|
41 |
+
citation=_CITATION,
|
42 |
+
)
|
43 |
+
|
44 |
+
def _split_generators(self, dl_manager):
|
45 |
+
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
46 |
+
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
47 |
+
images = dl_manager.iter_archive(images)
|
48 |
+
return [
|
49 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
50 |
+
gen_kwargs={
|
51 |
+
"images": images,
|
52 |
+
'annotations': annotations
|
53 |
+
}),
|
54 |
+
]
|
55 |
+
|
56 |
+
def _generate_examples(self, images, annotations):
|
57 |
+
annotations_df = pd.read_csv(annotations)
|
58 |
+
|
59 |
+
for idx, (image_path, image) in enumerate(images):
|
60 |
+
yield idx, {
|
61 |
+
'image_id':
|
62 |
+
annotations_df.loc[
|
63 |
+
annotations_df['image_name'] == image_path]
|
64 |
+
['image_id'].values[0],
|
65 |
+
"image": {
|
66 |
+
"path": image_path,
|
67 |
+
"bytes": image.read()
|
68 |
+
},
|
69 |
+
'annotations':
|
70 |
+
annotations_df.loc[
|
71 |
+
annotations_df['image_name'] == image_path]
|
72 |
+
['annotations'].values[0]
|
73 |
+
}
|