Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,18 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
3 |
- config_name: m2qa.chinese.creative_writing
|
4 |
features:
|
@@ -243,3 +257,90 @@ configs:
|
|
243 |
- split: validation
|
244 |
path: m2qa.turkish.product_reviews/validation-*
|
245 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: cc-by-nd-4.0
|
3 |
+
language:
|
4 |
+
- de
|
5 |
+
- zh
|
6 |
+
- tr
|
7 |
+
size_categories:
|
8 |
+
- 10K<n<100K
|
9 |
+
multilinguality:
|
10 |
+
- multilingual
|
11 |
+
pretty_name: M2QA
|
12 |
+
task_categories:
|
13 |
+
- question-answering
|
14 |
+
task_ids:
|
15 |
+
- extractive-qa
|
16 |
dataset_info:
|
17 |
- config_name: m2qa.chinese.creative_writing
|
18 |
features:
|
|
|
257 |
- split: validation
|
258 |
path: m2qa.turkish.product_reviews/validation-*
|
259 |
---
|
260 |
+
|
261 |
+
M2QA: Multi-domain Multilingual Question Answering
|
262 |
+
=====================================================
|
263 |
+
|
264 |
+
M2QA (Multi-domain Multilingual Question Answering) is an extractive question answering benchmark for evaluating joint language and domain transfer. M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing.
|
265 |
+
|
266 |
+
This Hugging Face datasets repo accompanies our paper "[M2QA: Multi-domain Multilingual Question Answering](TODO_INSERT_ARXIV_LINK)". If you want an explanation and code to reproduce all our results or want to use our custom-built annotation platform, have a look at our GitHub repository: [https://github.com/adapter-hub/m2qa](https://github.com/adapter-hub/m2qa)
|
267 |
+
|
268 |
+
|
269 |
+
Loading & Decrypting the Dataset
|
270 |
+
-----------------
|
271 |
+
|
272 |
+
Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we encrypt the validation data to prevent leakage of the dataset into LLM training datasets. But loading the dataset is still easy:
|
273 |
+
|
274 |
+
To load the dataset, you can use the following code:
|
275 |
+
```python
|
276 |
+
from datasets import load_dataset
|
277 |
+
from cryptography.fernet import Fernet
|
278 |
+
|
279 |
+
# Load the dataset
|
280 |
+
subset = "m2qa.german.news" # Change to the subset that you want to use
|
281 |
+
dataset = load_dataset("lenglaender/m2qa", subset) # TODO change to new repo name
|
282 |
+
|
283 |
+
# Decrypt it
|
284 |
+
fernet = Fernet(b"aRY0LZZb_rPnXWDSiSJn9krCYezQMOBbGII2eGkN5jo=")
|
285 |
+
|
286 |
+
def decrypt(example):
|
287 |
+
example["question"] = fernet.decrypt(example["question"].encode()).decode()
|
288 |
+
example["context"] = fernet.decrypt(example["context"].encode()).decode()
|
289 |
+
example["answers"]["text"] = [fernet.decrypt(answer.encode()).decode() for answer in example["answers"]["text"]]
|
290 |
+
return example
|
291 |
+
|
292 |
+
dataset["validation"] = dataset["validation"].map(decrypt)
|
293 |
+
```
|
294 |
+
|
295 |
+
Overview / Data Splits
|
296 |
+
----------
|
297 |
+
All used text passages stem from sources with open licenses. We list the licenses here: [https://github.com/adapter-hub/m2qa/tree/main/m2qa_dataset](https://github.com/adapter-hub/m2qa/tree/main/m2qa_dataset)
|
298 |
+
|
299 |
+
We have validation data for the following domains and languages:
|
300 |
+
|
301 |
+
| Subset Name | Domain | Language | #Question-Answer instances |
|
302 |
+
| --- | --- | --- | --- |
|
303 |
+
| `m2qa.german.product_reviews` | product_reviews | German | 1500 |
|
304 |
+
| `m2qa.german.creative_writing` | creative_writing | German | 1500 |
|
305 |
+
| `m2qa.german.news` | news | German | 1500 |
|
306 |
+
| `m2qa.chinese.product_reviews` | product_reviews | Chinese | 1500 |
|
307 |
+
| `m2qa.chinese.creative_writing` | creative_writing | Chinese | 1500 |
|
308 |
+
| `m2qa.chinese.news` | news | Chinese | 1500 |
|
309 |
+
| `m2qa.turkish.product_reviews` | product_reviews | Turkish | 1500 |
|
310 |
+
| `m2qa.turkish.creative_writing` | creative_writing | Turkish | 1500 |
|
311 |
+
| `m2qa.turkish.news` | news | Turkish | 1500 |
|
312 |
+
|
313 |
+
### Additional Training Data
|
314 |
+
We also provide training data for five domain-language pairs, consisting of 1500 question-answer instances each, totalling 7500 training examples. These are the subsets that contain training data:
|
315 |
+
- `m2qa.chinese.news`
|
316 |
+
- `m2qa.chinese.product_reviews`
|
317 |
+
- `m2qa.german.news`
|
318 |
+
- `m2qa.german.product_reviews`
|
319 |
+
- `m2qa.turkish.news`
|
320 |
+
|
321 |
+
The training data is not encrypted.
|
322 |
+
|
323 |
+
Citation
|
324 |
+
----------
|
325 |
+
|
326 |
+
If you use this dataset, please cite our paper:
|
327 |
+
```
|
328 |
+
@article{englaender-etal-2024-m2qa,
|
329 |
+
title="M2QA: Multi-domain Multilingual Question Answering",
|
330 |
+
author={Engl{\"a}nder, Leon and
|
331 |
+
Sterz, Hannah and
|
332 |
+
Poth, Clifton and
|
333 |
+
Pfeiffer, Jonas and
|
334 |
+
Kuznetsov, Ilia and
|
335 |
+
Gurevych, Iryna},
|
336 |
+
journal={arXiv preprint},
|
337 |
+
year="2024"
|
338 |
+
}
|
339 |
+
```
|
340 |
+
|
341 |
+
License
|
342 |
+
-------
|
343 |
+
|
344 |
+
This dataset is distributed under the [CC-BY-ND 4.0 license](https://creativecommons.org/licenses/by-nd/4.0/legalcode).
|
345 |
+
|
346 |
+
Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we decided to publish with a "No Derivatives" license to mitigate the risk of data contamination of crawled training datasets.
|