Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 71,912 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
HANDBOOK

Bjarne Däcker
Robert Virding

Erlang Handbook

by Bjarne Däcker and Robert Virding

Revision:
Wed Sep 17 22:30:30 2014 +0200

Latest version of this handbook can be found at:
http://opensource.erlang-solutions.com/erlang-handbook
ISBN: 978-1-938616-04-4

Editor
Omer Kilic

Contributors
The list of contributors can be found on the project repository.

Conventions
Syntax specifications are set using this monotype font. Square brackets ([ ]) enclose optional parts. Terms
beginning with an uppercase letter like Integer shall then be replaced by some suitable value. Terms beginning
with a lowercase letter like end are reserved words in Erlang. A vertical bar (|) separates alternatives, like
Integer | Float.

Errata and Improvements
This is a live document so please file corrections and suggestions for improvement about the content using the
issue tracker at https://github.com/esl/erlang-handbook. You may also fork this repository and send a
pull request with your suggested fixes and improvements. New revisions of this document will be published
after major corrections.

This text is made available under a Creative Commons Attribution-ShareAlike 3.0 License. You are free to
copy, distribute and transmit it under the license terms defined at http://creativecommons.org/licenses/
by-sa/3.0

Contents

1 Background, or Why Erlang is that it is

2 Structure of an Erlang program

2.1 Module syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Module attributes
2.2.1 Pre-defined module attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Macro and record definitions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 File inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Reserved words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Data types (terms)

3.1 Unary data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Booleans
3.1.3
Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.4 Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.6 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.7 Pids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.8 Funs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Compound data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.4
Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.5 Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Escape sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Type conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Pattern Matching

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Variables
4.2 Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Match operator (=) in patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
String prefix in patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2

3

4
4
4
4
5
5
6
6
7

8
8
8
8
8
9
9
9
9
9
9
9
10
10
11
11
12
12

14
14
15
15
15

2

4.2.3 Expressions in patterns
4.2.4 Matching binaries

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Functions

5.1 Function definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Function calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 Term comparisons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Arithmetic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Boolean expressions
Short-circuit boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.5 Operator precedences
5.4 Compound expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
5.4.2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3 List comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Guard sequences
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Tail recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Funs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 BIFs — Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Processes

6.1 Process creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Registered processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Process communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.1
Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.2 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.3 Receive with timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Process termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Process links
6.5.1 Error handling between processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.3 Receiving exit signals
6.6 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7 Process priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8 Process dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sending exit signals

7 Error handling

7.1 Exception classes and error reasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Catch and throw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Distributed Erlang

8.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Node connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 Hidden nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 Cookies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5 Distribution BIFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6 Distribution command line flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7 Distribution modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Ports and Port Drivers

9.1 Port Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Port BIFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

16
16

17
17
18
18
19
19
20
20
20
21
21
21
22
22
23
24
24

26
26
26
27
27
27
28
29
29
29
29
29
30
30
30

31
31
32
33

34
34
34
35
35
35
36
36

37
37
37

10 Code loading

11 Macros

11.1 Defining and using macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Predefined macros
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Flow Control in Macros
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Stringifying Macro Arguments

12 Further Reading and Resources

4

39

40
40
41
41
41

43

1

Background, or Why Erlang is that it is

Erlang is the result of a project at Ericsson’s Computer Science Laboratory to improve the programming of
telecommunication applications. A critical requirement was supporting the characteristics of such applica-
tions, that include:

• Massive concurrency

• Fault-tolerance

• Isolation

• Dynamic code upgrading at runtime

• Transactions

Throughout the whole of Erlang’s history the development process has been extremely pragmatic. The char-
acteristics and properties of the types of systems in which Ericsson was interested drove Erlang’s development.
These properties were considered to be so fundamental that it was decided to build support for them into
the language itself, rather than in libraries. Because of the pragmatic development process, rather than a
result of prior planning, Erlang “became” a functional language — since the features of functional languages
fitted well with the properties of the systems being developed.

5

2

Structure of an Erlang program

2.1 Module syntax

An Erlang program is made up of modules where each module is a text file with the extension .erl. For
small programs, all modules typically reside in one directory. A module consists of module attributes and
function definitions.

-module(demo).
-export([double/1]).

double(X) -> times(X, 2).

times(X, N) -> X * N.

The above module demo consists of the function times/2 which is local to the module and the function
double/1 which is exported and can be called from outside the module.

(the arrow ⇒ should be read as “resulting in”)
demo:double(10) ⇒ 20
double/1 means the function “double” with one argument. A function double/2 taking two arguments is
regarded as a different function. The number of arguments is called the arity of the function.

2.2 Module attributes

A module attribute defines a certain property of a module and consists of a tag and a value:

-Tag(Value).
Tag must be an atom, while Value must be a literal term (see chapter 3). Any module attribute can
be specified. The attributes are stored in the compiled code and can be retrieved by calling the function
Module:module_info(attributes).

2.2.1 Pre-defined module attributes

Pre-defined module attributes must be placed before any function declaration.

• -module(Module).

6

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM

7

This attribute is mandatory and must be specified first. It defines the name of the module. The name
Module, an atom (see section 3.1.1), should be the same as the filename without the ‘.erl’ extension.

• -export([Func1/Arity1, ..., FuncN/ArityN]).

This attribute specifies which functions in the module that can be called from outside the module. Each
function name FuncX is an atom and ArityX an integer.
• -import(Module,[Func1/Arity1, ..., FuncN/ArityN]).

This attribute indicates a Module from which a list of functions are imported. For example:

-import(demo, [double/1]).
This means that it is possible to write double(10) instead of the longer demo:double(10) which can
be impractical if the function is used frequently.

• -compile(Options).
Compiler options.

• -vsn(Vsn).

Module version. If this attribute is not specified, the version defaults to the checksum of the module.

• -behaviour(Behaviour).

This attribute either specifies a user defined behaviour or one of the OTP standard behaviours gen_server,
gen_fsm, gen_event or supervisor. The spelling “behavior” is also accepted.

2.2.2 Macro and record definitions

Records and macros are defined in the same way as module attributes:

-record(Record,Fields).

-define(Macro,Replacement).

Records and macro definitions are also allowed between functions, as long as the definition comes before its
first use. (About records see section 3.2.2 and about macros see chapter 11.)

2.2.3 File inclusion

File inclusion is specified in the same way as module attributes:

-include(File).

-include_lib(File).

File is a string that represents a file name. Include files are typically used for record and macro definitions
that are shared by several modules. By convention, the extension .hrl is used for include files.

-include("my_records.hrl").
-include("incdir/my_records.hrl").
-include("/home/user/proj/my_records.hrl").

If File starts with a path component $Var, then the value of the environment variable Var (returned by
os:getenv(Var)) is substituted for $Var.

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM

8

-include("$PROJ_ROOT/my_records.hrl").

include_lib is similar to include, but the first path component is assumed to be the name of an application.

-include_lib("kernel/include/file.hrl").

The code server uses code:lib_dir(kernel) to find the directory of the current (latest) version of kernel,
and then the subdirectory include is searched for the file file.hrl.

2.3 Comments

Comments may appear anywhere in a module except within strings and quoted atoms. A comment begins
with the percentage character (%) and covers the rest of the line but not the end-of-line. The terminating
end-of-line has the effect of a blank.

2.4 Character Set

Erlang handles the full Latin-1 (ISO-8859-1) character set. Thus all Latin-1 printable characters can be used
and displayed without the escape backslash. Atoms and variables can use all Latin-1 characters.

Character classes
Octal
40 - 57

Decimal
32 - 47

60 - 71
72 - 100

101 - 132
133 - 140

48 - 57
58 - 64

65 - 90
91 - 96

! " # $ % & ’ /

0 - 9
: ; < = > @

A - Z
[ \ ] ^ _ ‘

141 - 172
173 - 176

97 - 122
123 - 126

a - z
{ | } ~

200 - 237
240 - 277

128 - 159
160 - 191

300 - 326
327

192 - 214
215

330 - 336
337 - 366
367

216 - 222
223 - 246
247

- ¿

À - Ö
×

Ø - Þ
ß - ö
÷

370 - 377

248 - 255

ø - ÿ

Class
Punctuation
characters
Decimal digits
Punctuation
characters
Uppercase letters
Punctuation
characters
Lowercase letters
Punctuation
characters
Control characters
Punctuation
characters
Uppercase letters
Punctuation
character
Uppercase letters
Lowercase letters
Punctuation
character
Lowercase letters

CHAPTER 2. STRUCTURE OF AN ERLANG PROGRAM

9

2.5 Reserved words

The following are reserved words in Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond
div end fun if let not of or orelse receive rem try when xor

3

Data types (terms)

3.1 Unary data types

3.1.1 Atoms

An atom is a symbolic name, also known as a literal. Atoms begin with a lower-case letter, and may contain
alphanumeric characters, underscores (_) or at-signs (@). Alternatively atoms can be specified by enclosing
them in single quotes (’), necessary when they start with an uppercase character or contain characters other
than underscores and at-signs. For example:

hello

phone_number

’Monday’

’phone number’

’Anything inside quotes \n\012’

(see section 3.3)

3.1.2 Booleans

There is no boolean data type in Erlang. The atoms true and false are used instead.

2 =< 3 ⇒ true
true or false ⇒ true

3.1.3

Integers

In addition to the normal way of writing integers Erlang provides further notations. $Char is the Latin-1
numeric value of the character ‘Char’ (that may be an escape sequence) and Base#Value is an integer in base
Base, which must be an integer in the range 2..36.

42 ⇒ 42
$A ⇒ 65
$\n ⇒ 10
2#101 ⇒ 5
16#1f ⇒ 31

(see section 3.3)

10

CHAPTER 3. DATA TYPES (TERMS)

11

3.1.4 Floats

A float is a real number written Num[eExp] where Num is a decimal number between 0.01 and 10000 and Exp
(optional) is a signed integer specifying the power-of-10 exponent. For example:

2.3e-3 ⇒ 2.30000e-3

3.1.5 References

(corresponding to 2.3*10-3)

A reference is a term which is unique in an Erlang runtime system, created by the built-in function
make_ref/0. (For more information on built-in functions, or BIF s, see section 5.8.)

3.1.6 Ports

A port identifier identifies a port (see chapter 9).

3.1.7 Pids

A process identifier, pid, identifies a process (see chapter 6).

3.1.8 Funs

A fun identifies a functional object (see section 5.7).

3.2 Compound data types

3.2.1 Tuples

A tuple is a compound data type that holds a fixed number of terms enclosed within curly braces.

{Term1,...,TermN}
Each TermX in the tuple is called an element. The number of elements is called the size of the tuple.

BIFs to manipulate tuples
size(Tuple)
element(N,Tuple)
setelement(N,Tuple,Expr)

Returns the size of Tuple
Returns the Nth element in Tuple
Returns a new tuple copied from Tuple
except that the Nth element is replaced by
Expr

P = {adam, 24, {july, 29}} ⇒ P is bound to {adam, 24, {july, 29}}
element(1, P) ⇒ adam
element(3, P) ⇒ {july,29}
P2 = setelement(2, P, 25) ⇒ P2 is bound to {adam, 25, {july, 29}}
size(P) ⇒ 3
size({}) ⇒ 0

CHAPTER 3. DATA TYPES (TERMS)

12

3.2.2 Records

A record is a named tuple with named elements called fields. A record type is defined as a module attribute,
for example:

-record(Rec, {Field1 [= Value1],
...
FieldN [= ValueN]}).

Rec and Fields are atoms and each FieldX can be given an optional default ValueX. This definition may
be placed amongst the functions of a module, but only before it is used. If a record type is used by several
modules it is advisable to put it in a separate file for inclusion.

A new record of type Rec is created using an expression like this:

# Rec{Field1=Expr1, ..., FieldK=ExprK [, _=ExprL]}

The fields need not be in the same order as in the record definition. Fields omitted will get their respective
default values. If the final clause is used, omitted fields will get the value ExprL. Fields without default values
and that are omitted will have their value set to the atom undefined.
The value of a field is retrieved using the expression “Variable#Rec.Field”.

-module(employee).
-export([new/2]).
-record(person, {name, age, employed=erixon}).

new(Name, Age) -> #person{name=Name, age=Age}.

The function employee:new/2 can be used in another module which must also include the same record
definition of person.

{P = employee:new(ernie,44)} ⇒ {person, ernie, 44, erixon}
P#person.age ⇒ 44
P#person.employed ⇒ erixon
When working with records in the Erlang shell, the functions rd(RecordName, RecordDefinition) and
rr(Module) can be used to define and load record definitions. Refer to the Erlang Reference Manual for
more information.

3.2.3 Lists

A list is a compound data type that holds a variable number of terms enclosed within square brackets.

[Term1,...,TermN]
Each term TermX in the list is called an element. The length of a list refers to the number of elements.
Common in functional programming, the first element is called the head of the list and the remainder (from
the 2nd element onwards) is called the tail of the list. Note that individual elements within a list do not have
to have the same type, although it is common (and perhaps good) practice to do so — where mixed types
are involved, records are more commonly used.

BIFs to manipulate lists
length(List)
hd(List)
tl(List)

Returns the length of List
Returns the 1st (head) element of List
Returns List with the 1st element removed (tail)

CHAPTER 3. DATA TYPES (TERMS)

13

The vertical bar operator (|) separates the leading elements of a list (one or more) from the remainder. For
example:

[H | T] = [1, 2, 3, 4, 5] ⇒ H=1 and T=[2, 3, 4, 5]
[X, Y | Z] = [a, b, c, d, e] ⇒ X=a, Y=b and Z=[c, d, e]
Implicitly a list will end with an empty list, i.e. [a, b] is the same as [a, b | []]. A list looking like [a,
b | c] is badly formed and should be avoided (because the atom ’c’ is not a list). Lists lend themselves
naturally to recursive functional programming. For example, the following function ‘sum’ computes the sum
of a list, and ‘double’ multiplies each element in a list by 2, constructing and returning a new list as it goes.

sum([]) -> 0;
sum([H | T]) -> H + sum(T).

double([]) -> [];
double([H | T]) -> [H*2 | double(T)].

The above definitions introduce pattern matching, described in chapter 4. Patterns of this form are common
in recursive programming, explicitly providing a “base case” (for the empty list in these examples).

For working with lists, the operator ++ joins two lists together (appends the second argument to the first)
and returns the resulting list. The operator -- produces a list that is a copy of its first argument, except
that for each element in the second argument, the first occurrence of this element (if any) in the resulting
list is removed.

[1,2,3] ++ [4,5] ⇒ [1,2,3,4,5]
[1,2,3,2,1,2] -- [2,1,2] ⇒ [3,1,2]
A collection of list processing functions can be found in the STDLIB module lists.

3.2.4 Strings

Strings are character strings enclosed within double quotes but are, in fact, stored as lists of integers.
"abcdefghi" is the same as [97,98,99,100,101,102,103,104,105]
"" is the same as []
Two adjacent strings will be concatenated into one at compile-time and do not incur any runtime overhead.

"string" "42" ⇒ "string42"

3.2.5 Binaries

A binary is a chunk of untyped memory by default a sequence of 8-bit bytes.

<<Elem1,...,ElemN>>
Each ElemX is specified as Value[:Size][/TypeSpecifierList].

Element specification
Value
Should evaluate
to an integer,
float or binary

Size
Should evaluate to
an integer

TypeSpecifierList
A sequence of optional type
specifiers, in any order, separated
by hyphens (-)

CHAPTER 3. DATA TYPES (TERMS)

14

Type specifiers
Type
Signedness
Endianness big | little | native
Unit

integer | float | binary Default is integer
Default is unsigned
signed | unsigned
CPU dependent. Default is big
Allowed range is 1..256. Default
is 1 for integer and float, and 8
for binary

unit:IntegerLiteral

The value of Size multiplied by the unit gives the number of bits for the segment. Each segment can consist
of zero or more bits but the total number of bits must be a multiple of 8, or a badarg run-time error will
occur. Also, a segment of type binary must have a size evenly divisible by 8.

Binaries cannot be nested.

<<1, 17, 42>>
<<"abc">>
<<1, 17, 42:16>>
<<>>
<<15:8/unit:10>>
<<(-1)/unsigned>>

% <<1, 17, 42>>
% <<97, 98, 99>> (The same as <<$a, $b, $c>>)
% <<1,17,0,42>>
% <<>>
% <<0,0,0,0,0,0,0,0,0,15>>
% <<255>>

3.3 Escape sequences

Escape sequences are allowed in strings and quoted atoms.

Escape sequences
\b
\d
\e
\f
\n
\r
\s
\t
\v
\XYZ, \XY, \X
\^A .. \^Z
\^a .. \^z
\’
\"
\\

Backspace
Delete
Escape
Form feed
New line
Carriage return
Space
Tab
Vertical tab
Character with octal representation XYZ, XY or X
Control A to control Z
Control A to control Z
Single quote
Double quote
Backslash

3.4 Type conversions

There are a number of built-in functions for type conversion:

CHAPTER 3. DATA TYPES (TERMS)

15

Type conversions

atom integer float

atom
integer
float
pid
fun
tuple
list
binary

-

X
-
-
-
X
X

-
-
-
-
-
X
X

-
X

-
-
-
X
X

pid
-
-
-

-
-
X
X

fun
-
-
-
-

-
X
X

tuple
-
-
-
-
-

X
X

list
X
X
X
X
X
X

X

binary
X
X
X
X
X
X
X

The BIF float/1 converts integers to floats. The BIFs round/1 and trunc/1 convert floats to integers.
The BIFs Type_to_list/1 and list_to_Type/1 convert to and from lists.
The BIFs term_to_binary/1 and binary_to_term/1 convert to and from binaries.

% "hello"
% hello
% "7.00000000000000000000e+00"

atom_to_list(hello)
list_to_atom("hello")
float_to_list(7.0)
list_to_float("7.000e+00") % 7.00000
integer_to_list(77)
list_to_integer("77")
tuple_to_list({a, b ,c})
list_to_tuple([a, b, c])
pid_to_list(self())
term_to_binary(<<17>>)
term_to_binary({a, b ,c})
binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>)
term_to_binary(math:pi())

% "77"
% 77
% [a,b,c]
% {a,b,c}
% "<0.25.0>"
% <<131,109,0,0,0,1,17>>
% <<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>

% <<131,99,51,46,49,52,49,53,57,50,54,53,51,...>>

% {a,b,c}

4

Pattern Matching

4.1 Variables

Variables are introduced as arguments to a function or as a result of pattern matching. Variables begin with
an uppercase letter or underscore (_) and may contain alphanumeric characters, underscores and at-signs
(@). Variables can only be bound (assigned) once.

Abc
A_long_variable_name
AnObjectOrientatedVariableName
_Height

An anonymous variable is denoted by a single underscore (_) and can be used when a variable is required
but its value can be ignored.

[H|_] = [1,2,3]

% H=1 and the rest is ignored

Variables beginning with underscore like _Height are normal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Thus it
is possible to write:

member(_Elem, []) ->

false.

instead of:

member(_, []) ->

false.

which can make for more readable code.

The scope for a variable is its function clause. Variables bound in a branch of an if, case, or receive
expression must be bound in all branches to have a value outside the expression, otherwise they will be
regarded as unsafe (possibly undefined) outside the expression.

16

CHAPTER 4. PATTERN MATCHING

4.2 Pattern Matching

17

A pattern has the same structure as a term but may contain new unbound variables.

Name1
[H|T]
{error,Reason}

Patterns occur in function heads, case, receive, and try expressions and in match operator (=) expressions.
Patterns are evaluated through pattern matching against an expression and this is how variables are defined
and bound.

Pattern = Expr

Both sides of the expression must have the same structure. If the matching succeeds, all unbound variables,
if any, in the pattern become bound. If the matching fails, a badmatch run-time error will occur.

> {A, B} = {answer, 42}.
{answer,42}
> A.
answer
> B.
42

4.2.1 Match operator (=) in patterns

If Pattern1 and Pattern2 are valid patterns, then the following is also a valid pattern:

Pattern1 = Pattern2

The = introduces an alias which when matched against an expression, both Pattern1 and Pattern2 are
matched against it. The purpose of this is to avoid the reconstruction of terms.

foo({connect,From,To,Number,Options}, To) ->

Signal = {connect,From,To,Number,Options},
fox(Signal),
...;

which can be written more efficiently as:

foo({connect,From,To,Number,Options} = Signal, To) ->

fox(Signal),
...;

4.2.2 String prefix in patterns

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

which is equivalent to and easier to read than:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

CHAPTER 4. PATTERN MATCHING

18

You can only use strings as prefix expressions; patterns such as Str ++ "postfix" are not allowed.

4.2.3 Expressions in patterns

An arithmetic expression can be used within a pattern, provided it only uses numeric or bitwise operators
and its value can be evaluated to a constant at compile-time.

case {Value, Result} of

{?Threshold+1, ok} -> ...

% ?Threshold is a macro

4.2.4 Matching binaries

Bin = <<1, 2, 3>>
<<A, B, C>> = Bin
<<D:16, E>> = Bin
<<F, G/binary>> = Bin

% <<1,2,3>> All elements are 8-bit bytes
% A=1, B=2 and C=3
% D=258 and E=3
% F=1 and G=<<2,3>>

In the last line, the variable G of unspecified size matches the rest of the binary Bin.
Always put a space between (=) and (<<) so as to avoid confusion with the (=<) operator.

5

Functions

5.1 Function definition

A function is defined as a sequence of one or more function clauses. The function name is an atom.

Func(Pattern11,...,Pattern1N) [when GuardSeq1] -> Body1;

...;
...;

Func(PatternK1,...,PatternKN) [when GuardSeqK] -> BodyK.

The function clauses are separated by semicolons (;) and terminated by full stop (.). A function clause
consists of a clause head and a clause body separated by an arrow (->). A clause head consists of the
function name (an atom), arguments within parentheses and an optional guard sequence beginning with the
keyword when. Each argument is a pattern. A clause body consists of a sequence of expressions separated
by commas (,).

Expr1,
...,
ExprM

The number of arguments N is the arity of the function. A function is uniquely defined by the module name,
function name and arity. Two different functions in the same module with different arities may have the same
name. A function Func in Module with arity N is often denoted as Module:Func/N.

-module(mathStuff).
-export([area/1]).

area({square, Side}) -> Side * Side;
area({circle, Radius}) -> math:pi() * Radius * Radius;
area({triangle, A, B, C}) ->

S = (A + B + C)/2,
math:sqrt(S*(S-A)*(S-B)*(S-C)).

19

CHAPTER 5. FUNCTIONS

5.2 Function calls

A function is called using:

[Module:]Func(Expr1, ..., ExprN)

20

Module evaluates to a module name and Func to a function name or a fun. When calling a function in
another module, the module name must be provided and the function must be exported. This is referred to
as a fully qualified function name.

lists:keysearch(Name, 1, List)

The module name can be omitted if Func evaluates to the name of a local function, an imported function, or
an auto-imported BIF. In such cases, the function is called using an implicitly qualified function name.
Before calling a function the arguments ExprX are evaluated.
If the function cannot be found, an undef
run-time error will occur. Next the function clauses are scanned sequentially until a clause is found such that
the patterns in the clause head can be successfully matched against the given arguments and that the guard
sequence, if any, is true. If no such clause can be found, a function_clause run-time error will occur.
If a matching clause is found, the corresponding clause body is evaluated, i.e. the expressions in the body
are evaluated sequentially and the value of the last expression is returned.

The fully qualified function name must be used when calling a function with the same name as a BIF (built-in
function, see section 5.8). The compiler does not allow defining a function with the same name as an imported
function. When calling a local function, there is a difference between using the implicitly or fully qualified
function name, as the latter always refers to the latest version of the module (see chapter 10).

5.3 Expressions

An expression is either a term or the invocation of an operator, for example:

Term
op Expr
Expr1 op Expr2
(Expr)
begin

Expr1,
...,
ExprM

end

% no comma (,) before end

The simplest form of expression is a term, i.e. an integer, float, atom, string, list or tuple and the return value
is the term itself. There are both unary and binary operators. An expression may contain macro or record
expressions which will expanded at compile time.

Parenthesised expressions are useful to override operator precedence (see section 5.3.5):

1 + 2 * 3
(1 + 2) * 3

% 7
% 9

Block expressions within begin...end can be used to group a sequence of expressions and the return value
is the value of the last expression ExprM.

CHAPTER 5. FUNCTIONS

21

All subexpressions are evaluated before the expression itself is evaluated, but the order in which subexpres-
sions are evaluated is undefined.

Most operators can only be applied to arguments of a certain type. For example, arithmetic operators can
only be applied to integers or floats. An argument of the wrong type will cause a badarg run-time error.

5.3.1 Term comparisons

Expr1 op Expr2

A term comparison returns a boolean value, in the form of atoms true or false.

Comparison operators
==
/=
=:=
=/=

Equal to
Not equal to
Exactly equal to
Exactly not equal to

=<
<
>=
>

Less than or equal to
Less than
Greater than or equal to
Greater than

1==1.0
1=:=1.0
1 > a

% true
% false
% false

The arguments may be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < list < binary

Lists are compared element by element. Tuples are ordered by size, two tuples with the same size are
compared element by element. When comparing an integer and a float, the integer is first converted to a
float. In the case of =:= or =/= there is no type conversion.

5.3.2 Arithmetic expressions

op Expr
Expr1 op Expr2

An arithmetic expression returns the result after applying the operator.

Arithmetic operators
+
-
+
-
*
/
bnot
div
rem
band
bor
bxor
bsl
bsr

Unary +
Unary -
Addition
Subtraction
Multiplication
Floating point division
Unary bitwise not
Integer division
Integer remainder of X/Y
Bitwise and
Bitwise or
Arithmetic bitwise xor
Arithmetic bitshift left
Bitshift right

Integer | Float
Integer | Float
Integer | Float
Integer | Float
Integer | Float
Integer | Float
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

CHAPTER 5. FUNCTIONS

22

+1
4/2
5 div 2
5 rem 2
2#10 band 2#01
2#10 bor 2#01

% 1
% 2.00000
% 2
% 1
% 0
% 3

5.3.3 Boolean expressions

op Expr
Expr1 op Expr2

A boolean expression returns the value true or false after applying the operator.

Boolean operators
not
and
or
xor

Unary logical not
Logical and
Logical or
Logical exclusive or

not true
true and false
true xor false

% false
% false
% true

5.3.4 Short-circuit boolean expressions

Expr1 orelse Expr2
Expr1 andalso Expr2

These are boolean expressions where Expr2 is evaluated only if necessary. In an orelse expression Expr2
will be evaluated only if Expr1 evaluates to false. In an andalso expression Expr2 will be evaluated only if
Expr1 evaluates to true.

if A >= 0 andalso math:sqrt(A) > B -> ...

if is_list(L) andalso length(L) == 1 -> ...

5.3.5 Operator precedences

In an expression consisting of subexpressions the operators will be applied according to a defined operator
precedence order:

CHAPTER 5. FUNCTIONS

23

Operator precedence (from high to low)
:
#
Unary + - bnot not
/ * div rem band and
+ - bor bxor bsl bsr or xor
++ --
== /= =< < >= > =:= =/=
andalso
orelse
= !
catch

Left associative
Left associative
Right associative

Right associative

The operator with the highest priority is evaluated first. Operators with the same priority are evaluated
according to their associativity. The left associative arithmetic operators are evaluated left to right:

6 + 5 * 4 - 3 / 2 ⇒ 6 + 20 - 1.5 ⇒ 26 - 1.5 ⇒ 24.5

5.4 Compound expressions

5.4.1

If

if

end

GuardSeq1 ->

Body1;

...;
GuardSeqN ->
BodyN

% Note no semicolon (;) before end

The branches of an if expression are scanned sequentially until a guard sequence GuardSeq which evaluates
to true is found. The corresponding Body (sequence of expressions separated by commas) is then evaluated.
The return value of Body is the return value of the if expression.
If no guard sequence is true, an if_clause run-time error will occur. If necessary, the guard expression true
can be used in the last branch, as that guard sequence is always true (known as a “catch all”).

is_greater_than(X, Y) ->

if

end

X>Y ->

true;

true ->

false

% works as an ’else’ branch

It should be noted that pattern matching in function clauses can be used to replace if cases (most of the
time). Overuse of if sentences withing function bodies is considered a bad Erlang practice.

5.4.2 Case

Case expressions provide for inline pattern matching, similar to the way in which function clauses are matched.

CHAPTER 5. FUNCTIONS

24

case Expr of

Pattern1 [when GuardSeq1] ->

Body1;
...;

PatternN [when GuardSeqN] ->

BodyN

% Note no semicolon (;) before end

end

The expression Expr is evaluated and the patterns Pattern1...PatternN are sequentially matched against
the result. If a match succeeds and the optional guard sequence GuardSeqX is true, then the corresponding
BodyX is evaluated. The return value of BodyX is the return value of the case expression.
If there is no matching pattern with a true guard sequence, a case_clause run-time error will occur.

is_valid_signal(Signal) ->

case Signal of

{signal, _What, _From, _To} ->

true;

{signal, _What, _To} ->

true;

_Else ->

false

end.

% ’catch all’

5.4.3 List comprehensions

List comprehensions are analogous to the setof and findall predicates in Prolog.

[Expr || Qualifier1,...,QualifierN]

Expr is an arbitrary expression, and each QualifierX is either a generator or a filter. A generator is
written as:

Pattern <- ListExpr

where ListExpr must be an expression which evaluates to a list of terms. A filter is an expression which
evaluates to true or false. Variables in list generator expressions shadow variables in the function clause
surrounding the list comprehension.

The qualifiers are evaluated from left to right, the generators creating values and the filters constraining
them. The list comprehension then returns a list where the elements are the result of evaluating Expr for
each combination of the resulting values.

> [{X, Y} || X <- [1,2,3,4,5,6], X > 4, Y <- [a,b,c]].
[{5,a},{5,b},{5,c},{6,a},{6,b},{6,c}]

5.5 Guard sequences

A guard sequence is a set of guards separated by semicolons (;). The guard sequence is true if at least
one of the guards is true.

Guard1; ...; GuardK

CHAPTER 5. FUNCTIONS

25

A guard is a set of guard expressions separated by commas (,). The guard is true if all guard expressions
evaluate to true.

GuardExpr1, ..., GuardExprN

The permitted guard expressions (sometimes called guard tests) are a subset of valid Erlang expressions,
since the evaluation of a guard expression must be guaranteed to be free of side-effects.

Valid guard expressions:
The atom true;
Other constants (terms and bound variables), are all regarded as false;
Term comparisons;
Arithmetic and boolean expressions;
Calls to the BIFs specified below.
Type test BIFs
is_atom/1
is_constant/1
is_integer/1
is_float/1
is_number/1
is_reference/1
is_port/1
is_pid/1
is_function/1
is_tuple/1
is_record/2 The 2nd argument is
the record name
is_list/1
is_binary/1

Other BIFs allowed in guards:
abs(Integer | Float)
float(Term)
trunc(Integer | Float)
round(Integer | Float)
size(Tuple | Binary)
element(N, Tuple)
hd(List)
tl(List)
length(List)
self()
node()

node(Pid | Ref |Port)

A small example:

fact(N) when N>0 ->

N * fact(N-1);

fact(0) ->
1.

% first clause head
% first clause body
% second clause head
% second clause body

5.6 Tail recursion

If the last expression of a function body is a function call, a tail recursive call is performed in such a way
that no system resources (like the call stack) are consumed. This means that an infinite loop like a server
can be programmed provided it only uses tail recursive calls.

The function fact/1 above could be rewritten using tail recursion in the following manner:

fact(N) when N>1 -> fact(N, N-1);
fact(N) when N==1; N==0 -> 1.

fact(F,0) -> F;
fact(F,N) -> fact(F*N, N-1).

% The variable F is used as an accumulator

CHAPTER 5. FUNCTIONS

5.7 Funs

26

A fun defines a functional object. Funs make it possible to pass an entire function, not just the function
name, as an argument. A ‘fun’ expression begins with the keyword fun and ends with the keyword end
instead of a full stop (.). Between these should be a regular function declaration, except that no function
name is specified.

fun

end

(Pattern11,...,Pattern1N) [when GuardSeq1] ->

Body1;
...;

(PatternK1,...,PatternKN) [when GuardSeqK] ->

BodyK

Variables in a fun head shadow variables in the function clause surrounding the fun but variables bound in a
fun body are local to the body. The return value of the expression is the resulting function. The expression
fun Name/N is equivalent to:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

The expression fun Module:Func/Arity is also allowed, provided that Func is exported from Module.

Fun1 = fun (X) -> X+1 end.
Fun1(2)

% 3

Fun2 = fun (X) when X>=1000 -> big; (X) -> small end.
Fun2(2000)

% big

Anonymous funs: When a fun is anonymous, i.e. there is no function name in the definition of the fun, the
definition of a recursive fun has to be done in two steps. This example shows how to define an anonymous
fun sum(List) (see section 3.2.3) as an anonymous fun.

Sum1 = fun ([], _Foo) -> 0;([H|T], Foo) -> H + Foo(T, Foo) end.
Sum = fun (List) -> Sum1(List, Sum1) end.
Sum([1,2,3,4,5])

% 15

The definition of Sum is done in a way such that it takes itself as a parameter, matched to _Foo (empty list)
or Foo, which it then calls recursively. The definition of Sum calls Sum1, also passing Sum1 as a parameter.
Names in funs: In Erlang you can use a name inside a fun before the name has been defined. The syntax of
funs with names allows a variable name to be consistently present before each argument list. This allows
funs to be recursive in one steps. This example shows how to define the function sum(List) (see section
3.2.3) as a funs with names.

Sum = fun Sum([])-> 0;Sum([H|T]) -> H + Sum(T) end.
Sum([1,2,3,4,5])

% 15

5.8 BIFs — Built-in functions

The built-in functions, BIFs, are implemented in the C code of the runtime system and do things that are
difficult or impossible to implement in Erlang. Most of the built-in functions belong to the module erlang
but there are also built-in functions that belong to other modules like lists and ets. The most commonly

CHAPTER 5. FUNCTIONS

27

used BIFs belonging to the module erlang are auto-imported, i.e. they do not need to be prefixed with
the module name.

Some useful BIFs
date()
now()

time()

halt()
processes()

process_info(Pid)

Returns today’s date as {Year, Month, Day}
Returns current time in microseconds. System
dependent
Returns current time as {Hour, Minute,
Second} System dependent
Stops the Erlang system
Returns a list of all processes currently known to
the system
Returns a dictionary containing information
about Pid

Module:module_info() Returns a dictionary containing information

about the code in Module

A dictionary is a list of {Key, Value} terms (see also section 6.8).

size({a, b, c})
atom_to_list(’Erlang’)
date()
time()

% 3
% "Erlang"
% {2013,5,27}
% {01,27,42}

6

Processes

A process corresponds to one thread of control. Erlang permits very large numbers of concurrent processes,
each executing like it had an own virtual processor. When a process executing functionA calls another
functionB, it will wait until functionB is finished and then retrieve its result. If instead it spawns another
process executing functionB, both will continue in parallel (concurrently). functionA will not wait for
functionB and the only way they can communicate is through message passing.
Erlang processes are light-weight with a small memory footprint, fast to create and shut-down, and the
scheduling overhead is low. A process identifier, Pid, identifies a process. The BIF self/0 returns the
Pid of the calling process.

6.1 Process creation

A process is created using the BIF spawn/3.

spawn(Module, Func, [Expr1, ..., ExprN])

Module should evaluate to a module name and Func to a function name in that module. The list Expr1...ExprN
are the arguments to the function. spawn creates a new process and returns the process identifier, Pid. The
new process starts by executing:

Module:Func(Expr1, ..., ExprN)

The function Func has to be exported even if it is spawned by another function in the same module. There
are other spawn BIFs, for example spawn/4 for spawning a process on another node.

6.2 Registered processes

A process can be associated with a name. The name must be an atom and is automatically unregistered if
the process terminates. Only static (cyclic) processes should be registered.

28

CHAPTER 6. PROCESSES

29

Name registration BIFs
register(Name, Pid)
registered()

whereis(Name)

Associates the atom Name with the process Pid
Returns a list of names which have been
registered
Returns the Pid registered under Name or
undefined if the name is not registered

6.3 Process communication

Processes communicate by sending and receiving messages. Messages are sent using the send operator (!)
and are received using receive. Message passing is asynchronous and reliable, i.e. the message is guaranteed
to eventually reach the recipient, provided that the recipient exists.

6.3.1 Send

Pid ! Expr

The send (!) operator sends the value of Expr as a message to the process specified by Pid where it will be
placed last in its message queue. The value of Expr is also the return value of the (!) expression. Pid must
evaluate to a process identifier, a registered name or a tuple {Name,Node}, where Name is a registered process
at Node (see chapter 8). The message sending operator (!) never fails, even if it addresses a non-existent
process.

6.3.2 Receive

receive

Pattern1 [when GuardSeq1] ->

Body1;

...
PatternN [when GuardSeqN] ->

BodyN

% Note no semicolon (;) before end

end

This expression receives messages sent to the process using the send operator (!). The patterns PatternX
are sequentially matched against the first message in time order in the message queue, then the second and
so on. If a match succeeds and the optional guard sequence GuardSeqX is true, then the message is removed
from the message queue and the corresponding BodyX is evaluated. It is the order of the pattern clauses that
decides the order in which messages will be received prior to the order in which they arrive. This is called
selective receive. The return value of BodyX is the return value of the receive expression.
receive never fails. The process may be suspended, possibly indefinitely, until a message arrives that matches
one of the patterns and with a true guard sequence.

CHAPTER 6. PROCESSES

30

wait_for_onhook() ->

receive

onhook ->

disconnect(),
idle();
{connect, B} ->

B ! {busy, self()},
wait_for_onhook()

end.

6.3.3 Receive with timeout

receive

Pattern1 [when GuardSeq1] ->

Body1;
...;

PatternN [when GuardSeqN] ->

BodyN

after

ExprT ->

BodyT

end

ExprT should evaluate to an integer between 0 and 16#ffffffff (the value must fit in 32 bits). If no matching
message has arrived within ExprT milliseconds, then BodyT will be evaluated and its return value becomes
the return value of the receive expression.

wait_for_onhook() ->

receive

onhook ->

disconnect(),
idle();
{connect, B} ->

B ! {busy, self()},
wait_for_onhook()

after

60000 ->

disconnect(),
error()

end.

A receive...after expression with no branches can be used to implement simple timeouts.

receive
after

ExprT ->

BodyT

end

CHAPTER 6. PROCESSES

31

Two special cases for the timeout value ExprT
infinity

This is equivalent to not using a timeout and can be useful for
timeout values that are calculated at run-time
If there is no matching message in the mailbox, the timeout
will occur immediately

0

6.4 Process termination

A process always terminates with an exit reason which may be any term. If a process terminates normally,
i.e. it has run to the end of its code, then the reason is the atom normal. A process can terminate itself by
calling one of the following BIFs.

exit(Reason)

erlang:error(Reason)

erlang:error(Reason, Args)

A process terminates with the exit reason {Reason,Stack} when a run-time error occurs.
A process may also be terminated if it receives an exit signal with a reason other than normal (see section
6.5.3).

6.5 Process links

Two processes can be linked to each other. Links are bidirectional and there can only be one link be-
tween two distinct processes (unique Pids). A process with Pid1 can link to a process with Pid2 using the
BIF link(Pid2). The BIF spawn_link(Module, Func, Args) spawns and links a process in one atomic
operation.

A link can be removed using the BIF unlink(Pid).

6.5.1 Error handling between processes

When a process terminates it will send exit signals to all processes that it is linked to. These in turn will
also be terminated or handle the exit signal in some way. This feature can be used to build hierarchical
program structures where some processes are supervising other processes, for example restarting them if they
terminate abnormally.

6.5.2 Sending exit signals

A process always terminates with an exit reason which is sent as an exit signal to all linked processes. The
BIF exit(Pid, Reason) sends an exit signal with the reason Reason to Pid, without affecting the calling
process.

6.5.3 Receiving exit signals

If a process receives an exit signal with an exit reason other than normal it will also be terminated, and
will send exit signals with the same exit reason to its linked processes. An exit signal with reason normal is
ignored. This behaviour can be changed using the BIF process_flag(trap_exit, true).

CHAPTER 6. PROCESSES

32

The process is then able to trap exits. This means that an exit signal will be transformed into a message
{’EXIT’, FromPid, Reason} which is put into the process’s mailbox and can be handled by the process like
a regular message using receive.
However, a call to the BIF exit(Pid, kill) unconditionally terminates the process Pid regardless whether
it is able to trap exit signals or not.

6.6 Monitors

A process Pid1 can create a monitor for Pid2 using the BIF:

erlang:monitor(process, Pid2)

which returns a reference Ref. If Pid2 terminates with exit reason Reason, a message as follows will be sent
to Pid1:

{’DOWN’, Ref, process, Pid2, Reason}

If Pid2 does not exist, the ’DOWN’ message is sent immediately with Reason set to noproc. Monitors are
unidirectional in that if Pid1 monitors Pid2 then it will receive a message when Pid2 dies but Pid2 will not
receive a message when Pid1 dies. Repeated calls to erlang:monitor(process, Pid) will create several,
independent monitors and each one will be sent a ’DOWN’ message when Pid terminates.
A monitor can be removed by calling erlang:demonitor(Ref). It is possible to create monitors for processes
with registered names, also at other nodes.

6.7 Process priorities

The BIF process_flag(priority, Prio) defines the priority of the current process. Prio may have the
value normal, which is the default, low, high or max.
Modifying a process’s priority is discouraged and should only be done in special circumstances. A problem
that requires changing process priorities can generally be solved by another approach.

6.8 Process dictionary

Each process has its own process dictionary which is a list of {Key, Value} terms.

Process dictionary BIFs
put(Key, Value)
get(Key)
get()

Saves the Value under the Key or replaces an older value
Retrieves the value stored under Key or undefined
Returns the entire process dictionary as a list of {Key,
Value} terms

get_keys(Value) Returns a list of keys that have the value Value
erase(Key)
erase()

Deletes {Key, Value}, if any, and returns Key
Returns the entire process dictionary and deletes it

Process dictionaries could be used to keep global variables within an application, but the extensive use of
them for this is usually regarded as poor programming style.

7

Error handling

This chapter deals with error handling within a process. Such errors are known as exceptions.

7.1 Exception classes and error reasons

Exception classes
error

exit
throw

Run-time error for example when applying an operator to the
wrong types of arguments. Run-time errors can be raised by
calling the BIFs erlang:error(Reason) or
erlang:error(Reason, Args)
The process calls exit(Reason), see section 6.4
The process calls throw(Expr), see section 7.2
An exception will cause the process to crash, i.e. its execution is stopped and it is removed from the system.
It is also said to terminate. Then exit signals will be sent to any linked processes. An exception consists of its
class, an exit reason and a stack. The stack trace can be retrieved using the BIF erlang:get_stacktrace/0.
Run-time errors and other exceptions can be prevented from causing the process to terminate by using the
expressions try and catch.
For exceptions of class error, for example normal run-time errors, the exit reason is a tuple {Reason,
Stack} where Reason is a term indicating which type of error.

33

CHAPTER 7. ERROR HANDLING

34

Exit reasons
badarg
badarith

{badmatch, Value}

function_clause

{case_clause,
Value}
if_clause

Argument is of wrong type.
Argument is of wrong type in an arithmetic
expression.
Evaluation of a match expression failed. Value did
not match.
No matching function clause is found when
evaluating a function call.
No matching branch is found when evaluating a
case expression. Value did not match.
No true branch is found when evaluating an if
expression.

{try_clause, Value} No matching branch is found when evaluating the

undef

{badfun, Fun}
{badarity, Fun}

timeout_value

noproc
{nocatch, Value}

system_limit

of section of a try expression. Value did not
match.
The function cannot be found when evaluating a
function call
There is something wrong with Fun
A fun is applied to the wrong number of
arguments. Fun describes it and the arguments
The timeout value in a receive...after expression
is evaluated to something else than an integer or
infinity
Trying to link to a non-existant process
Trying to evaluate a throw outside of a catch.
Value is the thrown term
A system limit has been reached

Stack is the stack of function calls being evaluated when the error occurred, given as a list of tuples {Module,
Name, Arity} with the most recent function call first. The most recent function call tuple may in some cases
be {Module, Name, Args}.

7.2 Catch and throw

catch Expr

This returns the value of Expr unless an exception occurs during its evaluation. Then the return value will
be a tuple containing information about the exception.

{’EXIT’, {Reason, Stack}}

Then the exception is caught. Otherwise it would terminate the process.
a function call exit(Term) the tuple {’EXIT’,Term} is returned.
throw(Term) then Term will be returned.

If the exception is caused by
If the exception is caused by calling

catch 1+2 ⇒ 3
catch 1+a ⇒ {’EXIT’,{badarith,[...]}}
catch has low precedence and catch subexpressions often need to be enclosed in a block expression or in
parentheses.

A = (catch 1+2) ⇒ 3
The BIF throw(Expr) is used for non-local return from a function. It must be evaluated within a catch,
which returns the result from evaluating Expr.

CHAPTER 7. ERROR HANDLING

35

catch begin 1,2,3,throw(four),5,6 end ⇒ four
If throw/1 is not evaluated within a catch, a nocatch run-time error will occur.
A catch will not prevent a process from terminating due to an exit signal from another linked process (unless
it has been set to trap exits).

7.3 Try

The try expression is able to distinguish between different exception classes. The following example emulates
the behaviour of catch Expr:

try Expr
catch

throw:Term -> Term;
exit:Reason -> {’EXIT’, Reason};
error:Reason -> {’EXIT’,{Reason, erlang:get_stacktrace()}}

end

The full description of try is as follows:

try Expr [of

Pattern1 [when GuardSeq1] -> Body1;
...;
PatternN [when GuardSeqN] -> BodyN]

[catch

[Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] -> ExceptionBody1;
...;
[ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] -> ExceptionBodyN]

[after AfterBody]
end

There has to be at least one catch or an after clause. There may be an of clause following the Expr which
adds a case expression on the value of Expr.
try returns the value of Expr unless an exception occurs during its evaluation. Then the exception is caught
and the patterns ExceptionPattern with the right exception Class are sequentially matched against the
caught exception. An omitted Class is shorthand for throw. If a match succeeds and the optional guard
sequence ExceptionGuardSeq is true, the corresponding ExceptionBody is evaluated and becomes the return
value.

If there is no matching ExceptionPattern of the right Class with a true guard sequence, the exception is
passed on as if Expr had not been enclosed in a try expression. An exception occurring during the evaluation
of an ExceptionBody it is not caught.
If none of the of Patterns match, a try_clause run-time error will occur.
If defined then AfterBody is always evaluated last irrespective of whether and error occurred or not. Its
return value is ignored and the return value of the try is the same as without an after section. AfterBody
is evaluated even if an exception occurs in Body or ExceptionBody, in which case the exception is passed on.
An exception that occurs during the evaluation of AfterBody itself is not caught, so if the AfterBody is
evaluated due to an exception in Expr, Body or ExceptionBody, that exception is lost and masked by the
new exception.

8

Distributed Erlang

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each
other. Each such runtime system is called a node. Nodes can reside on the same host or on different hosts
connected through a network. The standard distribution mechanism is implemented using TCP/IP sockets
but other mechanisms can also be implemented.

Message passing between processes on different nodes, as well as links and monitors, is transparent when
using Pids. However, registered names are local to each node. A registered process at a particular node is
referred to as {Name,Node}.
The Erlang Port Mapper Daemon epmd is automatically started on every host where an Erlang node is
started. It is responsible for mapping the symbolic node names to machine addresses.

8.1 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line flag
-name (long name) or -sname (short name).
The format of the node name is an atom Name@Host where Name is the name given by the user and Host is
the full host name if long names are used, or the first part of the host name if short names are used. node()
returns the name of the node. Nodes using long names cannot communicate with nodes using short names.

8.2 Node connections

The nodes in a distributed Erlang system are fully connected. The first time the name of another node is
used, a connection attempt to that node will be made. If a node A connects to node B, and node B has a
connection to node C, then node A will also try to connect to node C. This feature can be turned off using
the command line flag:

-connect_all false

If a node goes down, all connections to that node are removed. The BIF:

erlang:disconnect(Node)

disconnects Node. The BIF nodes() returns the list of currently connected (visible) nodes.

36

CHAPTER 8. DISTRIBUTED ERLANG

8.3 Hidden nodes

37

It is sometimes useful to connect to a node without also connecting to all other nodes. For this purpose,
a hidden node may be used. A hidden node is a node started with the command line flag -hidden.
Connections between hidden nodes and other nodes must be set up explicitly. Hidden nodes do not show up
in the list of nodes returned by nodes(). Instead, nodes(hidden) or nodes(connected) must be used. A
hidden node will not be included in the set of nodes that the module global keeps track of.

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library
erl_interface contains functions for this purpose.

8.4 Cookies

Each node has its own magic cookie, which is an atom. The Erlang network authentication server (auth)
reads the cookie in the file $HOME/.erlang.cookie. If the file does not exist, it will be created with a random
string as content.

The permissions of the file must be set to octal 400 (read-only by user). The cookie of the local node may
also be set using the BIF erlang:set_cookie(node(), Cookie).
The current node is only allowed to communicate with another node Node2 if it knows its cookie. If this is
different from the current node (whose cookie will be used by default) it must be explicitly set with the BIF
erlang:set_cookie(Node2, Cookie2).

8.5 Distribution BIFs

Distribution BIFs
node()

is_alive()

erlang:get_cookie()

set_cookie(Node, Cookie)

nodes()

nodes(connected|hidden)

monitor_node(Node,
true|false)

node(Pid|Ref|Port)

erlang:disconnect_node(Node)
spawn[_link|_opt](Node,

Module, Function, Args)

spawn[_link|_opt](Node, Fun)

Returns the name of the current node.
Allowed in guards
Returns true if the runtime system is a
node and can connect to other nodes,
false otherwise
Returns the magic cookie of the
current node
Sets the magic cookie used when
connecting to Node. If Node is the
current node, Cookie will be used
when connecting to all new nodes
Returns a list of all visible nodes to
which the current node is connected to
Returns a list not only of visible
nodes, but also hidden nodes and
previously known nodes, etc.
Monitors the status of Node. A
message {nodedown, Node} is
received if the connection to it is lost
Returns the node where the argument
is located
Forces the disconnection of Node
Creates a process at a remote node

Creates a process at a remote node

CHAPTER 8. DISTRIBUTED ERLANG

38

8.6 Distribution command line flags

Distribution command line flags
-connect_all false
-hidden
-name Name

-setcookie Cookie

-sname Name

Only explicit connection set-ups will be used
Makes a node into a hidden node
Makes a runtime system into a node, using long
node names
Same as calling
erlang:set_cookie(node(), Cookie))
Makes a runtime system into a node, using short
node names

8.7 Distribution modules

There are several modules available which are useful for distributed programming:

Kernel modules useful for distribution
global
global_group
net_adm
net_kernel
STDLIB modules useful for distribution
slave

A global name registration facility
Grouping nodes to global name registration groups
Various net administration routines
Erlang networking kernel

Start and control of slave nodes

9

Ports and Port Drivers

Ports provide a byte-oriented interface to external programs and communicate with Erlang processes by
sending and receiving lists of bytes as messages. The Erlang process that creates a port is called the port
owner or the connected process of the port. All communication to and from the port should go via
the port owner. If the port owner terminates, so will the port (and the external program, if it has been
programmed correctly).

The external program forms another OS process. By default, it should read from standard input (file
descriptor 0) and write to standard output (file descriptor 1). The external program should terminate when
the port is closed.

9.1 Port Drivers

Drivers are normally programmed in C and are dynamically linked to the Erlang runtime system. The linked-
in driver behaves like a port and is called a port driver. However, an erroneous port driver might cause the
entire Erlang runtime system to leak memory, hang or crash.

9.2 Port BIFs

Port creation BIF
open_port(PortName,
PortSettings)

Returns a port identifier Port as
the result of opening a new Erlang
port. Messages can be sent to and
received from a port identifier, just
like a Pid. Port identifiers can also
be linked to or registered under a
name using link/1 and register/2.

PortName is usually a tuple {spawn,Command} where the string Command is the name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Command is
found. If the driver is found, it will be started.

PortSettings is a list of settings (options) for the port. The list typically contains at least a tuple {packet,N}
which specifies that data sent between the port and the external program are preceded by an N-byte length
indicator. Valid values for N are 1, 2 or 4. If binaries should be used instead of lists of bytes, the option
binary must be included.

39

CHAPTER 9. PORTS AND PORT DRIVERS

40

The port owner Pid communicates with Port by sending and receiving messages. (Any process could send
the messages to the port, but messages from the port will always be sent to the port owner).

Messages sent to a port
{Pid, {command,
Data}}
{Pid, close}

{Pid,{connect,NewPid}}

Sends Data to the port.

Closes the port. Unless the port is already
closed, the port replies with {Port, closed}
when all buffers have been flushed and the port
really closes.
Sets the port owner of Port to NewPid. Unless
the port is already closed, the port replies with
{Port, connected} to the old port owner.
Note that the old port owner is still linked to
the port, but the new port owner is not.

Data must be an I/O list. An I/O list is a binary or a (possibly deep) list of binaries or integers in the range
0..255.

Messages received from a port
{Port, {data, Data}}
{Port, closed}
{Port, connected}
{’EXIT’, Port, Reason}

Data is received from the external program
Reply to Port ! {Pid,close}
Reply to Port ! {Pid,{connect, NewPid}}
If Port has terminated for some reason.

Instead of sending and receiving messages, there are also a number of BIFs that can be used. These can be
called by any process, not only the port owner.

Port BIFs
port_command(Port, Data)
port_close(Port)
port_connect(Port, NewPid)

erlang:port_info(Port,
Item)
erlang:ports()

Sends Data to Port
Closes Port
Sets the port owner of Port to NewPid.
The old port owner Pid stays linked to
the port and has to call unlink(Port) if
this is not desired.
Returns information as specified by Item

Returns a list of all ports on the current
node

There are some additional BIFs that only apply to port drivers: port_control/3 and erlang:port_call/3.

10

Code loading

Erlang supports code updating in a running system. Code replacement is performed at module level.

The code of a module can exist in two versions in a system: current and old. When a module is loaded
into the system for the first time, the code becomes current. If a new instance of the module is loaded, the
code of the previous instance becomes old and the new instance becomes current. Normally a module is
automatically loaded the first time a function in it is called. If the module is already loaded then it must
explicitly be loaded again to a new version.

Both old and current code are valid, and may be used concurrently. Fully qualified function calls will always
refer to the current code. However, the old code may still be run by other processes.

If a third instance of the module is loaded, the code server will remove (purge) the old code and any processes
lingering in it are terminated. Then the third instance becomes current and the previously current code
becomes old.

To change from old code to current code, a process must make a fully qualified function call.

-module(mod).
-export([loop/0]).

loop() ->

receive

code_switch ->

mod:loop();

Msg ->

...
loop()

end.

To make the process change code, send the message code_switch to it. The process then will make a fully
qualified call to mod:loop() and change to the current code. Note that mod:loop/0 must be exported.

41

11

Macros

11.1 Defining and using macros

-define(Const, Replacement).
-define(Func(Var1, ..., VarN), Replacement).

A macro must be defined before it is used but a macro definition may be placed anywhere among the
attributes and function declarations of a module. If a macro is used in several modules it is advisable to put
the macro definition in an include file. A macro is used as follows:

?Const
?Func(Arg1,...,ArgN)

Macros are expanded during compilation. A macro reference ?Const is replaced by Replacement like this:

-define(TIMEOUT, 200).
...
call(Request) ->

server:call(refserver, Request, ?TIMEOUT).

is expanded to:

call(Request) ->

server:call(refserver, Request, 200).

A macro reference ?Func(Arg1, ..., ArgN) will be replaced by Replacement, where all occurrences of a
variable VarX from the macro definition are replaced by the corresponding argument ArgX.

-define(MACRO1(X, Y), {a, X, b, Y}).
...
bar(X) ->

?MACRO1(a, b),
?MACRO1(X, 123).

will be expanded to:

bar(X) ->

{a, a, b, b},

42

CHAPTER 11. MACROS

{a, X, b, 123}.

43

To view the result of macro expansion, a module can be compiled with the ‘P’ option:

compile:file(File, [’P’]).

This produces a listing of the parsed code after preprocessing and parse transforms, in the file File.P.

11.2 Predefined macros

Predefined macros
?MODULE
?MODULE_STRING
?FILE
?LINE
?MACHINE

The name of the current module
The name of the current module, as a string
The file name of the current module
The current line number
The machine name, ’BEAM’

11.3 Flow Control in Macros

-undef(Macro).

% This inhibits the macro definition.

-ifdef(Macro).

%% Lines that are evaluated if Macro was defined

-else.

%% If the condition was false, these lines are evaluated instead.

-endif.

ifndef(Macro) can be used instead of ifdef and means the opposite.

-ifdef(debug).
-define(LOG(X), io:format("{~p,~p}:~p~n",[?MODULE,?LINE,X])).
-else.
-define(LOG(X), true).
-endif.

If debug is defined when the module is compiled, ?LOG(Arg) will expand to a call to io:format/2 and provide
the user with some simple trace output.

11.4 Stringifying Macro Arguments

??Arg, where Arg is a macro argument expands to the argument in the form of a string.

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [ ? ?Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)),

results in:

CHAPTER 11. MACROS

44

io:format("Call ~s: ~w~n", ["myfunction(1,2)", m:myfunction(1,2)]),
io:format("Call ~s: ~w~n", ["you:function(2,1)", you:function(2,1)]),

That is, a trace output with both the function called and the resulting value.

12

Further Reading and Resources

Following websites provide in-depth explanation of topics and concepts briefly covered in this document:

• Official Erlang documentation: http://www.erlang.org/doc/
• Learn You Some Erlang for Great Good: http://learnyousomeerlang.com/
• Tutorials section at Erlang Central: https://erlangcentral.org/wiki/index.php?title=Category:

HowTo

Still have questions? erlang-questions mailing list (http://erlang.org/mailman/listinfo/erlang-questions)
is a good place for general discussions about Erlang/OTP, the language, implementation, usage and beginners
questions.

45