Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 117,649 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
FORTRAN 

Last revision 31/10/2023 

PART I – INTRODUCTION TO FORTRAN 

1. Fortran Background 
1.1 Fortran history and standards 
1.2 Source code and executable code 
1.3 Fortran Compilers 

2. Creating and Compiling Fortran Code 
2.1 NAG compiler – using the FBuilder IDE 
2.2 NAG compiler – using the command window  
2.3 Gnu compiler (gfortran) 

3. A Simple Program 

4. Basic Elements of Fortran 
4.1 Variable names 
4.2 Data types 
4.3 Declaration of variables 
4.4 Numeric operators and expressions 
4.5 Character operators 
4.6 Logical operators and expressions 
4.7 Line discipline 
4.8 Miscellaneous remarks 

5. Repetition: do and do while 
5.1 Types of do loop 
5.2 Deterministic do loops 
5.3 Non-deterministic do loops 
5.4 Cycle and exit 
5.5 Nested do loops 
5.6 Non-integer steps 
5.7 Implied do loops 

6. Decision-Making: if and select 
6.1 The if construct 
6.2 The select construct 

7. Arrays 
7.1 One-dimensional arrays (vectors) 
7.2 Array declaration 
7.3 Dynamic arrays 

Recommended Books 

7.4 Array input/output and implied do loops 
7.5 Element-by-element operations 
7.6 Matrices and higher-dimension arrays 
7.7 Terminology 
7.8 Array initialisation 
7.9 Array expressions 
7.10 Array sections 
7.11 The where construct 
7.12 Array-handling functions 

8. Text Handling 
8.1 Character constants and variables 
8.2 Character assignment 
8.3 Character operators 
8.4 Character substrings 
8.5 Comparing and ordering 
8.6 Intrinsic procedures with character arguments 

9. Functions and Subroutines 
9.1 Intrinsic procedures 
9.2 Program units 
9.3 Procedure arguments 
9.4 The save attribute 
9.5 Array arguments 
9.6 Character arguments 

10. Input and Output 
10.1 read and write 
10.2 Input/output with files 
10.3 Formatted write 
10.4 The read statement 
10.5 Repositioning input files 
10.6 Additional specifiers 
10.7 Internal files – characters 

11. Modules 
11.1 Sharing variables 
11.2 Internal functions 
11.3 Compiling programs with modules 

Hahn, B.D., 1994, Fortran 90 For Scientists and Engineers, Arnold 
Chapman, S.J., 2007, Fortran 95/2003 For Scientists and Engineers (3rd Ed.), McGraw-Hill 
Chapman, S.J., 2017, Fortran For Scientists and Engineers (4th Ed.), McGraw-Hill – updated version, very expensive. 
Metcalf, M., Reid, J. and Cohen, M., 2018, Modern Fortran Explained, OUP, outstanding and up-to-date definitive text, but not 

for beginners. 

Fortran Part I 

- 1 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. FORTRAN BACKGROUND 

1.1 Fortran History and Standards 

Fortran (FORmula TRANslation) was the first high-level programming language. It was devised by John Bachus in 1953. The 
first Fortran compiler was produced in 1957. 

Fortran is highly standardised, making it extremely portable (able to run on a wide range of platforms). It has passed through a 
sequence of international standards, those in bold below being the most important: 
• 
• 
• 
• 
• 
• 
• 

Fortran 66 – original ANSI standard (accepted 1972!); 
Fortran 77 – ANSI X3.9-1978 – structured programming; 
Fortran 90 – ISO/IEC 1539:1991 – array operations, dynamic arrays, modules, derived data types; 
Fortran 95 – ISO/IEC 1539-1: 1997 – minor revision; 
Fortran 2003 – ISO/IEC 1539-1:2004(E) –object-oriented programming; interoperability with C; 
Fortran 2008 – ISO/IEC 1539-1:2010 – coarrays (parallel programming) 
Fortran 2018 – ISO/IEC 1539:2018  

Fortran  is  widely-used  in  high-performance  computing  (HPC),  where  its  ability  to  run  code  in  parallel  on  a  large  number  of 
processors make it popular for computationally-demanding tasks in science and engineering. 

1.2 Source Code and Executable Code 

In all high-level languages (Fortran, C, C++, Python, Java, …) programmes are written in source code. This is a human-readable 
set  of  instructions  that  can  be  created  or  modified  on  any  computer  with  any  text  editor.  Filetypes  identify  the  programming 
language; e.g. 

Fortran files typically have filetypes .f90 or .f95 
C++ files typically have filetype .cpp 
Python files typically have filetype .py 

The job of a compiler in compiled languages such as Fortran, C, and C++ is to turn this into machine-readable executable code. 

Under Windows, executable files have filetype .exe 

In this course the programs are very simple and most will be contained in a single file. However: 
• 
• 

in real engineering problems, code is often contained in many separate source files; 
producing executable code is actually a two-stage process: 
– compiling converts each individual source file into intermediate object code; 
– linking combines all the object files with additional library routines to create an executable program. 

Most Fortran codes consist of multiple subprograms or procedures, all performing specific, independent tasks. These may be in 
one  file  or  in  separate  files.  The  latter  arrangement  allows  related  routines  to  be  collected  together  and  used  in  different 
applications. Modern Fortran makes extensive use of modules for this. 

1.3 Fortran Compilers 

The primary Fortran compiler in the University of Manchester PC clusters is the NAG fortran compiler (nagfor), which has an 
associated integrated development environment (Fortran Builder). However, many other Fortran compilers exist and your 
programs should be able to use any of them. The Intel Fortran compilers (ifort and ifx) can be downloaded for personal use 
as  part  of  the  oneAPI  compiler  suite,  whilst  the  GNU  fortran  compiler  GFortran  can  be  downloaded  as  part  of  the  GNU 
compiler collection. 

Other compilers are available to researchers on the Manchester Computational Shared Facility (CSF). 

The web page for this course includes a list of Fortran compilers, including some online compilers for simple testing. 

Fortran 

- 2 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Creating and Compiling Fortran Code 

You may create, edit, compile and run a Fortran program either: 
• 
• 

from the command line; 
in an integrated development environment (IDE). 

You can create Fortran source code with any text editor: e.g. notepad in Windows, vim in linux, or any more advanced editor. 
Many people (but not I) like the bells and whistles that come with their favourite IDE. 

The  traditional  way  to  start  programming  in  a  new  language  is  to  create,  compile  and  run  a  simple  program  to  write  “Hello, 
world!”. Use  an editor or an IDE to create the following file  and call it  prog1.f90. 

program hello 
   print *, "Hello, world!" 
end program hello 

Compile and run this code using any of the methods below. Note that all compilers will have their own particular set of options 
regarding the naming of files, syntax restrictions and checking, optimisation, linking run-time libraries etc. For these you must 
consult individual compiler documentation. 

2.1 NAG Fortran – Using the FBuilder IDE 

Start the FBuilder IDE from the NAG program group on the Windows Start menu. 

Either type in the Fortran source code using the built-in editor (File > New), or open a previously-created source file (File 
> Open). Whichever you do, make sure that it is saved with a .f90 or .f95 extension. 

Run it from the “Execute” icon on the toolbar. This will automatically save and compile (if necessary), then run your program. 
An executable file called prog1.exe will appear in the same folder as the source file. 

FBuilder does many things that facilitate code development, like colour-coding syntax and allowing you to save, compile or 
run at the press of a button. It also creates many unnecessary files in the process and makes setting compiler options complicated, 
so I personally prefer the command-line approach below. 

Within FBuilder, help (for both Fortran language and the NAG compiler) is available from a pull-down menu. 

2.2 NAG Fortran – Using the Command Line 

Open a command window. (In the University clusters, to set the PATH environment variable to find the compiler you may have 
to launch the command window from the NAG program group on the Start menu). 

Navigate to any suitable folder; e.g. 

cd \work 

Create (and then save) the source code: 

notepad prog1.f90 

Compile the code by entering 

nagfor prog1.f90     (which creates an executable a.exe) 

or: 

nagfor –o prog1.exe prog1.f90     (to create an executable prog1.exe) 

Run the executable (assuming you have called it prog1.exe as above) by typing its name: 

prog1.exe 

or, since the system runs .exe files automatically, just: 

prog1 

Help (on compiler options only) is available from the command line: 

nagfor –help 

You may like to experiment with some of the non-default options: for example, those that assist with  debugging or doing run-
time checks. 

Fortran 

- 3 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 GNU Fortran Compiler (gfortran) 

This is actually my favourite compiler. It is part of the wider GNU compiler collection (GCC), which also includes compilers for 
C++ and other languages. It can be downloaded either as a stand-alone, as part of the MinGW collection, or bundled with an IDE 
like Code::Blocks (downloadable from http://www.codeblocks.org/). 

To compile a single file from the Windows command line just type 

gfortran prog1.f90     (which creates an executable a.exe) 

More advanced options include: 

gfortran -o prog1.exe prog1.f90     (to create an executable prog1.exe) 
gfortran –Wall -pedantic prog1.f90     (to increase the error-checking and warnings) 

The executable program can be run in the command window simply by typing its name (with or without the .exe extension). 

Alternatively, you can edit, compile and run files all from the comfort of an IDE such as Code::Blocks. 

Fortran 

- 4 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
3. A SIMPLE PROGRAM 

Example. Quadratic-equation solver (real roots). 

The well-known solutions of the quadratic equation 

are 

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 

𝑥 =

−𝐵 ± √𝐵2 − 4𝐴𝐶
2𝐴

The roots are real if and only if the discriminant 𝐵2 − 4𝐴𝐶 is greater than or equal to zero. 

A program which asks for the coefficients and then outputs the real roots might look like the following. 

program roots                                   
! Program solves the quadratic equation ax**2+bx+c=0 
   implicit none 
   real a, b, c                                ! Declare variables 
   real discriminant, root1, root2 

   print *, "Input a, b, c"                    ! Request coefficients 
   read *, a, b, c 

   discriminant = b ** 2 - 4.0 * a * c         ! Calculate discriminant 

   if ( discriminant < 0.0 ) then       
      print *, "No real roots" 
   else 
      ! Calculate roots 
      root1 = ( -b + sqrt( discriminant ) ) / ( 2.0 * a ) 
      root2 = ( -b - sqrt( discriminant ) ) / ( 2.0 * a ) 
      print *, "Roots are ", root1, root2      ! Output roots 
   end if 

end program roots 

This example illustrates many of the features of Fortran (or, indeed, other programming languages). 

(1) Statements 

Fortran source code consists of a series of  statements. The usual use is one per line (interspersed with blank lines for clarity). 
However, we shall see later that it is possible to have more than one statement per line and for one statement to run over several 
lines.  

Lines may be up to 132 characters long. This is more than you should use. 

(2) Comments 

The exclamation mark (!) signifies that everything after it on that line is a  comment (i.e. ignored by the compiler, but there for 
your information). Use your common sense and don’t state the bleedin’ obvious. 

(3) Constants 

Elements  whose  values don’t  change  are  termed  constants.  Here,  2.0  and  4.0  are  numerical  constants.  The presence  of  the 
decimal point indicates that they are of real type. We shall discuss the difference between real and integer types later. 

(4) Variables 

Entities whose values can change are termed  variables. Each has a  name that is, basically, a symbolic label associated with a 
specific  location  in  memory.  To  make  the  code  more  readable,  names  should  be  descriptive  and  meaningful;  e.g. 
discriminant in the above example. 

Fortran 

- 5 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All the variables in the above example have been declared of  type real (i.e. floating-point numbers). Other types (integer, 
complex, character, logical, …) will be introduced later, where we will also explain the implicit none statement. 

Variables are declared when memory is set aside for them by specifying their type, and defined when some value is assigned to 
them. 

(5) Operators 

Fortran makes use of the usual binary numerical operators +, -, * and / for addition, subtraction, multiplication and division, 
respectively. ** indicates exponentiation (“to the power of”). 

Note  that  “=”  is  an  assignment  operation,  not  a  mathematical  equality.  Read  it  as  “becomes”.    It  is  perfectly  legitimate  (and, 
indeed, common practice) to write statements like 
   n = n + 1 
meaning, effectively, “add 1 to variable n”. 

(6) Intrinsic Functions 

The  Fortran  standard  provides  many  intrinsic  (that  is,  built-in)  functions  to  perform  important  mathematical  functions.  The 
square-root function sqrt is used in the example above. Others mathematical ones include cos, sin, log, exp, tanh. A list 
of useful mathematical intrinsic functions is given in Appendix A4. 

Note  that,  in  common  with  all  other  serious  programming  languages,  the  trigonometric  functions  sin,  cos,  etc.  expect  their 
arguments to be in radians. 

(7) Simple Input/Output 

Simple list-directed input and output is achieved by the statements 
   read *, list 
   print *, list 
respectively. The contents are determined by what is in list and the *’s indicate that the input is from the keyboard and that the 
computer should decide how to format the output. Data is read from the standard input device (usually the keyboard) and output 
to the standard output device (usually the screen). In Section 10 it will be shown how to read from and write to files and how to 
produce formatted output. 

(8) Decision-making 

All programming languages have some facility for decision-making: doing one thing if some condition is true and (optionally) 
doing something else if it is not. The particular form used here is 
   if ( some condition ) then 
      [ do something ] 
   else 
      [ do something else ] 
   end if 

We shall encounter various other forms of the if construct in Section 6. 

(9) The program and end program statements 

Every Fortran program has one and only one main program. We shall see later that it can have many subprograms (subroutines 
or functions). The main program has the structure 
   program name 
      [ declaration statements ] 
      [ executable statements ] 
   end program name 

Fortran 

- 6 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(10) Cases and Spaces 

Except within character contexts, Fortran is completely case-insensitive. Everything may be written in upper case, lower case or 
a combination of both, and we can refer to the same variable as ROOT1 and root1 within the same program unit. Warning: this 
is a very bad habit to get into, however, because it is not true in major programming languages like C, C++, Python or Java. 

Very  old  versions  of  Fortran  required  you  to  write  programs  in  upper  case,  start  comments  with  a  c  in  column  1,  and  start 
executable  statements  in  column  6.  These  ceased  to  be  requirements  many  decades  ago  (but  there  are  still  many  ill-informed 
denigrators of Fortran  who  grew  up  in the prehistoric era when they were required: they can probably tell you about punched 
cards, too!) 

Spaces are generally valid everywhere except in the middle of names and keywords. As with comments, they should be  used to 
aid clarity. 

Indentation  is  optional  but  highly  recommended,  because  it  makes  it  much  easier  to  understand  a  program’s  structure.  It  is 
common to indent a program’s contents by 3 or 4 spaces from its header and end statements, and to further indent the statements 
contained  within,  for  example,  if  constructs  or  do  loops by  a  similar  amount.  Be  consistent  with  the  amount of  indentation. 
(Because different editors have different tab settings – and they are often ridiculously large – I recommend that you use spaces 
rather than tabs.) 

(11) Running the Program. 

Follow the instructions in Section 2 to compile and link the program. 

Run it by entering its name at the command prompt or from within an IDE. It will ask you for the three coefficients a, b and c. 

). The roots should be –1 and –2. You can input the numbers as 

Try a = 1, b = 3, c = 2 (i.e. 

1  3  2  [enter] 

or 

or even 

1,3,2  [enter] 

1 [enter] 
3  [enter] 
2  [enter] 

Now try the combinations 

a = 1, b = –5, c = 6 
a = 1, b = –5, c = 10  (What are the roots of the quadratic equation in this case?) 

Fortran 

- 7 - 

David Apsley 

0232=++xx 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. BASIC ELEMENTS OF FORTRAN 

4.1 Variable Names 

A  name  is  a  symbolic  link  to  a  location  in  memory.  A  variable  is  a  memory  location  whose  value  may  be  changed  during 
execution. Names must: 
• 
• 

have between 1 and 63 alphanumeric characters (alphabet, digits and underscore); 
start with a letter. 

It is possible – but unwise – to use a Fortran keyword or standard intrinsic function as a variable name. However, this will then 
prevent  you  from  using  the  corresponding  intrinsic  function.  Tempting  names  that  should  be  avoided  in  this  respect  include: 
count, len, product, range, scale, size, sum, tiny. 

The following are valid (if unlikely) variable names: 

Manchester_United 
as_easy_as_123 

The following are not: 

Romeo+Juliet    
999help   
Hello! 

(+ is not allowed) 
(starts with a number) 
(! would be treated as a comment, not part of the variable name) 

4.2 Data Types 

In Fortran there are 5 intrinsic (i.e. built-in) data types: 

integer 
real 
complex 
character 
logical 

The first three are the numeric types. The last two are non-numeric types. 

It is also possible to have derived types and pointers. Both of these are highly desirable in a modern programming language (and 
are similar to features in C++). These are described in the advanced section of the course. 

Integer constants are whole numbers, without a decimal point, e.g. 

100 

+17 

–444 

0 

666 

They are stored exactly, but their range is limited: typically –2n-1 to 2n-1–1, where n is either 16 (for 2-byte integers) or 32 (for 4-
byte integers – the default for  most  compilers). It is possible to change the default range using the  kind type parameter (see 
later). 

Real constants have a decimal point and may be entered as either 

fixed point, e.g.  412.2 
floating point, e.g. 4.122e+02 

Real  constants  are  stored  in  exponential  form  in  memory,  no  matter  how  they  are  entered.  They  are  accurate  only  to  a  finite 
machine precision (which, again, can be changed using the kind type parameter). 

Complex constants consist of paired real numbers, corresponding to real and imaginary parts. e.g.  (2.0,3.0) corresponds to 
2 + 3i. 

Character constants consist of strings of characters enclosed by a pair of delimiters, which may be either single (') or double  
(") quotes; e.g. 

'This is a string' 
"School of Mechanical, Aerospace and Civil Engineering" 

The delimiters themselves are not part of the string.  

Logical constants may be either .true. or .false. 

Fortran 

- 8 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Declaration of Variables 

Type 

Variables  should  be  declared  (that  is,  have  their  data  type  defined  and  memory  set  aside  for  them)  before  any  executable 
statements. This is achieved by a type declaration statement of the form, e.g., 
   integer num 
   real x 
   complex z 
   logical answer 
   character letter 

More than one variable can be declared in each statement. e.g. 
   integer i, j, k 

Initialisation 

If desired, variables can be initialised in their type-declaration statement. In this case a double colon (::) separator must be used. 
Thus, the above examples might become: 
   integer :: num = 20 
   real :: x = 0.05 
   complex :: z = ( 0.0, 1.0 ) 
   logical :: answer = .true. 
   character :: letter = 'A' 

Variables can also be initialised with a data statement; e.g. 
   data num, x, z, answer, letter / 20, 0.05, ( 0.0, 1.0 ), .true., 'A' / 
The data statement must be placed before any executable statements. 

Attributes 

Various  attributes  may  be  specified  for  variables  in  their  type-declaration  statements.  One  such  is  parameter.  A  variable 
declared with this attribute may not have its value changed within the program unit. It is often used to emphasise key physical or 
mathematical constants; e.g. 
   real, parameter :: gravity = 9.81 

Other attributes will be encountered later and there is a list of them in the Appendix. Note that the double colon separator  (::) 
must be used when attributes are specified or variables are initialised – it is optional otherwise. 

Precision and “Kind” 

By default, in the particular Fortran implementation in the University clusters a variable declared by, e.g., 
   real x 
will occupy 4 bytes of computer memory and will be inaccurate in the sixth significant figure. The accuracy can be increased by 
replacing this type statement by the often-used, but now deprecated, 
   double precision x 
with the floating-point variable now requiring twice as many bytes of memory. 

Unfortunately,  the  number  of  bytes  with  which  real  and  double  precision  floating-point  numbers  are  stored  is  not 
standard and varies between implementations. Similarly, whether an  integer is stored using 4 or 8 bytes affects the  largest 
number that can be represented exactly. Sometimes these issues of accuracy and range may lead to different results on different 
computers. Better portability can be assured using kind parameters 

Although it doesn’t entirely solve the portability problem, I avoid the double precision statement by using: 
   integer, parameter :: rkind = kind( 1.0d0 ) 
followed by declarations for all floating-point variables like:  
   real(kind=rkind) x 
To switch to single precision for all floating-point variables just replace 1.0d0 by 1.0 in the first statement. 

Intrinsic functions which allow you to determine the kind parameter for different types are 

Fortran 

- 9 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   selected_char_kind( name ) 
   selected_int_kind( range ) 
   selected_real_kind( precision, range ) 
Look them up if you need them. 

Historical Baggage – Implicit Typing. 

Unless a variable was explicitly typed (integer, real etc.), older versions of Fortran implicitly assumed a type for a variable 
depending on the first letter of its name. If not explicitly declared, a variable whose name started with one of the letters i-o was 
assumed to be an integer; otherwise it was assumed to be real. (Hence the appalling Fortran joke: “God is real, unless declared 
integer”!). 

To allow older code to run, Fortran has to permit implicit typing. However, it is very bad programming practice (leading to major 
errors if you mis-type a variable: e.g. angel instead of angle), and it is highly advisable to: 
• 
• 

use a type declaration for all variables; 
put the implicit none statement at the start of all program units (this turns off implied typing and compilation will 
fail with an error statement if you have forgotten to declare the type of a variable). 

4.4 Numeric Operators and Expressions 

A numeric expression is a formula combining constants, variables and functions using the  numeric intrinsic operators given in 
the following table. The precedence is exactly the same as the normal rules of algebra. 

operator 
** 
* 
/ 
+ 
- 

meaning 
exponentiation (xy) 
multiplication (xy) 
division (x/y) 
addition (x+y) or unary plus (+x) 
subtraction (x–y) or unary minus (–x) 

precedence (1 = highest) 
1 
2 
2 
3 
3 

Operators with two operands are called binary operators. Those with one operand are called unary operators. 

Precedence 

Expressions  are  evaluated  in  exactly  the  same  order  as  in normal  mathematics:  highest precedence  first,  then  (usually)  left  to 
right. Brackets ( ), which have highest precedence of all, can be used to override this. e.g. 

1 + 2 * 3 
10.0 / 2.0 * 5.0 
5.0 * 2.0 ** 3 

evaluates as    1 + (2  3)     or    7 
evaluates as    (10.0 / 2.0)  5.0     or    25.0 
evaluates as    5.0  (2.03)       or    40.0 

Repeated exponentiation is the single exception to the left-to-right rule for equal precedence: 

a ** b ** c 

evaluates as 

Type Coercion 

When a binary operator has operands of different type, the weaker (usually integer) type is  coerced (i.e. forcibly converted) to 
the stronger (usually real) type and the result is of the stronger type. e.g. 

3 / 10.0    →    3.0 / 10.0    →    0.3 

***  WARNING  ***  A  common  source  of  difficulty  to  beginners  is  integer  division.  This  is  not  unique  to  Fortran:  it  works 
exactly the  same in  many programming languages, including C, C++ and Java.  If an integer is divided by an integer then the 
result  must  be  an  integer  and  is  obtained  by  truncation  towards  zero.  Thus,  in  the  above  example,  if  we  had  written  3/10 
(without any decimal point) the result would have been 0. 

Integer division is fraught with dangers to the unwary. Be careful when mixing reals and integers. If you intend a constant to be a 
floating-point number, use a decimal point!  

Integer division can, however, sometimes be useful. For example, 

Fortran 

- 10 - 

David Apsley 

cba 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
x = 25 – 4 * ( 25 / 4 ) 

gives the remainder (here, 1) when 25 is divided by 4. However, the intention is probably made clearer by 

x = modulo( 25, 4 ) 

Type coercion also occurs in assignment. (= is formally an operator, albeit one with the lowest precedence of all.) In this case, 
however, the conversion is to the type of the variable being assigned. Suppose i has been declared as an integer. Then it is only 
permitted to hold whole-number values and the statement 
   i = –25.0 / 4.0 
will first evaluate the RHS (as –6.25) and then truncate it towards zero, assigning  the value –6 to i. 

4.5 Character Operators 

There is only one character operator, concatenation, //; e.g. 

"Man" // "chester"    gives   "Manchester" 

4.6 Logical Operators and Expressions 

A logical expression is either: 
• 

 a combination of numerical expressions and the relational operators 

< 
<= 
> 
>= 
== 
/= 

less than 
less than or equal 
greater than 
greater than or equal 
equal 
not equal 

• 

a combination of other logical expressions, variables and the logical operators given below. 

operator  meaning 
.not.  logical negation (.true. → .false. and vice-versa) 
.and.  logical intersection (both are .true.) 
.or. 
logical union (at least one is .true.) 
.eqv.  logical equivalence (both .true. or both .false.) 
.neqv.  logical non-equivalence (one is .true. and the other .false.) 

precedence (1=highest) 
1 
2 
3 
4 
4 

As with numerical expressions, brackets can be used to override precedence. 

A logical variable can be assigned to directly; e.g. 
   ans = .true. 
or by using a logical expression; e.g. 
   ans = a > 0.0 .and. c > 0.0 

Logical expressions are most widely encountered in decision making; e.g. 
   if ( discriminant < 0.0 ) print *, "Roots are complex" 

Older  forms  .lt.,  .le.,  .gt.,  .ge.,  .eq.,  .ne.  may  be  used  instead  of  <,  <=,  >,  >=,  ==,  /=  if  desired,  but  I  can’t 
imagine why you would want to. 

Character strings can also be compared, according to the character-collating sequence used by the compiler; this is often, but not 
always,  ASCII.  The  Fortran  standard  requires  that  for  all-upper-case,  all-lower-case  or  all-numeric  expressions,  normal 
dictionary order is preserved, working character-by-character from the left. Thus, for example, both the logical expressions 

"abcd" < "ef" 
"0123" < "3210" 

are true, but 

"Dr" < "Apsley" 

is false. However, upper case may or may not come before lower case in the character-collating sequence and letters may or may 
not come before numbers, so that mixed-case expressions or mixed alphabetic-numeric expressions should not be compared with 
the <, <=, >, >= operators, as they could conceivably give different answers on different platforms. A more portable method is to 
use  the  intrinsic  functions  llt,  lle,  lgt,  lge,  which  guarantee  to  compare  according  to  the  ASCII  collating  sequence, 
irrespective of whether that is the native one for the platform. 

Fortran 

- 11 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.7 Line Discipline 

The usual layout of statements is one-per-line. This is the recommended form in most instances. However, 
• 

There may be more than one statement per line, separated by a semicolon; e.g. 
   a = 1;   b = 10;   c = 100  
I only recommend this for simple initialisation of related variables. 

• 

• 

Having  empty  lines  between  naturally  grouped  statements  achieves  much  the  same  effect  as  in  paragraphed  text:  it 
makes it more readable. 

Each statement may run onto one or more  continuation lines if there is an ampersand (&) at the end of the line to be 
continued. e.g. 
   radians = degrees * PI  & 
               / 180.0 

is the same as the single-line statement 
   radians = degrees * PI / 180.0 

Lines may be up to 132 characters long, but don’t regard that as a target. 

4.8 Miscellaneous Remarks 

Pi 

The  constant  π  appears  a  lot  in  mathematical  programming,  e.g.  when  converting  between  degrees  and  radians.  If  a  real 
variable PI is declared then its value can be set within the program: 
   PI = 3.14159 
but it is neater to declare it as a parameter in its type statement: 
   real, parameter :: PI = 3.14159 
Alternatively, a popular method to obtain an accurate value is to invert the result  tan(π/4) = 1: 
   PI = 4.0 * atan( 1.0 ) 
This requires an expensive function evaluation, so should be done only once in a program. 

Exponents 

If an exponent (“power”) is coded as an integer (i.e. without a decimal point) it will be worked out by repeated multiplication; 
e.g. 

a ** 3 
will be worked out as  
a ** (–3)   will be worked out as  

 a * a * a 
1 / ( a * a * a ) 

For non-integer powers (including whole numbers if a decimal point is used) the result will be worked out by: 

ab = (eln a)b = eb ln a 

(Actually, the base may not be e, but the premise is the same; e.g. 

a ** 3.0  will be worked out as something akin to e3.0 ln A) 

However, logarithms of negative numbers don’t exist, so the following Fortran statement is legitimate: 

x = (–1) ** 2 

but the next one isn’t: 

x = (–1) ** 2.0 

The bottom line is that: 
• 

if  the  exponent  is  genuinely  a  whole  number,  then  don’t  use  a  decimal  point,  or,  for  small  powers,  simply  write  it 
explicitly as a repeated multiple: e.g. a * a * a;  
take  special  care  with  odd  roots  of  negative  numbers;  e.g.  (–1)1/3;  you  should  work  out  the  fractional  power  of  the 
magnitude, then adjust the sign; e.g. write (–8)1/3 as  – (8)1/3. 

• 

Remember: because of integer arithmetic, the Fortran statement 

x ** ( 1 / 3 ) 

actually evaluates as x ** 0 (= 1.0; presumably not intended). To ensure real arithmetic, code as 

x ** ( 1.0 / 3.0 ) 

A useful intrinsic function for setting the sign of an expression is  

sign( x, y ) → absolute value of x times the sign of y 

Fortran 

- 12 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. REPETITION: do AND do while 

See Sample Programs B  

5.1 Types of do Loop 

One advantage of computers is that they never get bored by repeating the same action many times. 

If a block of code is to be performed repeatedly it is put inside a do loop, the basic structure of which is: 

   do ... 

repeated section 

   end do 

(Indentation helps to clarify the logical structure of the code – it is easy to see which section is being repeated.) 

There are two basic types of do loops: 
(a) Deterministic do loops – the number of times the section is repeated is stated explicitly; e.g., 

   do i = 1, 10 

repeated section 

   end do 

This will perform the repeated section once for each value of the counter i = 1, 2, 3, …, 10. The value of i itself may or may not 
actually be used in the repeated section.  

(b) Non-deterministic do loops – the number of repetitions is not stated in advance. The enclosed section is repeated until some 
condition is  or is not  met. This may be done in two alternative  ways. The first requires a logical reason for  stopping looping, 
whilst the second requires a logical reason for continuing looping. 

   do 

      ... 
if ( logical expression ) exit 
      ... 

   end do 

or 

   do while ( logical expression ) 

repeated section 

   end do 

5.2 Deterministic do Loops 

The general form of the do statement in this case is: 
   do variable = value1, value2 [, value3] 

Note that: 
• 
• 
• 
• 

the loop will execute for each value of the variable from value1 to value2 in steps of value3. 
value3 is the stride; it may be negative or positive; if omitted (a common case) it is assumed to be 1; 
the counter variable must be of integer type; (there could be round-off errors if using real variables); 
value1, value2 and value3 may be constants (e.g. 100) or expressions evaluating to integers (e.g. 6 * (2 + j)). 

Fortran 

- 13 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The counter (n in the program below) may, as in this program, simply count the number of loops. 

program lines 
! Illustration of do loops 
   implicit none 
   integer n                                   ! A counter 

   do n = 1, 100                               ! Start of repeated section 
      print *, "I must not talk in class" 
   end do                                      ! End of repeated section 

end program lines 

Alternatively, the counter (i in the program below) may actually be used in the repeated section. 

program doloops 
   implicit none 
   integer i 

   do i = 1, 20 
      print *, i, i * i 
   end do 

end program doloops 
Observe the effect of changing the do statement to, for example, 
   do i = 10, 20, 3 
or 
   do i = 20, -20, -5 

5.3 Non-Deterministic do Loops 

The 
   if ( ... ) exit 
form continues until some logical expression evaluates as  .true.. Then it jumps out of the loop and continues with the  code 
after the loop. In this form a .true. result tells you when to stop looping. This can actually be used to exit from any form of 
loop. 

The 
   do while ( ... ) 
form continues until some logical expression evaluates as .false.. Then it stops looping and continues with the code after the 
loop. In this form a .true. result tells you when to continue looping. 

Most  problems  involving  non-deterministic  loops  can  be  written  in  either  form,  although  some  programmers  express  a 
preference for the latter because it makes clear in an easily identified place (the top of the loop) the criterion for looping. 

Non-deterministic do loops are particularly good for 
• 
• 

summing power series (looping stops when the absolute value of a term is less than some given tolerance); 
single-point iteration (looping stops when the change is less than a given tolerance). 

As an example of the latter consider the following code for solving the Colebrook-White equation for the friction factor λ in flow 
through a pipe: 

1

√λ

= −2.0 log10 (

𝑘𝑠
3.7𝐷

+

2.51

Re√λ

) 

The user inputs values of the relative roughness (ks / D) and Reynolds number Re. For simplicity, the  program actually iterates 
for 𝑥 = 1/√λ: 

𝑥 = −2.0 log10 (

𝑘𝑠
3.7𝐷

+

2.51
Re

𝑥) 

Note that: 

Fortran 

- 14 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• 
• 

• 

x must have a starting value (here it is set to 1); 
there must be a criterion for continuing or stopping iteration (here: looping/iteration continues until successive values 
differ by less than some tolerance, say 10–5); 
in  practice,  this  calculation  would  probably  be  part  of  a  much  bigger  pipe-network  calculation  and  would  be  better 
coded as a function (see Section 9) rather than a main program. 

program friction 
   implicit none 
   real ksd                                           ! Relative roughness (ks/d) 
   real re                                            ! Reynolds number 
   real x                                             ! 1/sqrt(lambda) 
   real xold                                          ! Previous value of x 
   real, parameter :: tolerance = 1.0e-5              ! Convergence tolerance 

   print *, "Input ks/d and Re"                       ! Request values 
   read *, ksd, Re 

   x = 1.0                                            ! Initial guess 
   xold = x + 1.0                                     ! Anything different from x 

   do while ( abs( x - xold ) > tolerance ) 
      xold = x                                        ! Store previous 
      x = -2.0 * log10( ksd / 3.7 + 2.51 * x / Re )   ! New value 
   end do 

   print *, "Friction factor = ", 1.0 / ( x * x )     ! Output lambda 

end program friction 

Exercise: re-code the do while  loop repeat criterion in the if ( ... ) exit form. 

5.4 Cycle and Exit 

As already noted, the statement 
   exit 
breaks out of the current do loop. 

A related statement is 
   cycle 
which skips straight to the end of the current loop, then continues on the next. 

5.5 Nested do Loops 

do loops can be nested (i.e. one inside another). Indentation is highly recommended here to clarify the loop structure. A rather 
unspectacular example is given below.  

program nested 
   implicit none 
   integer i, j                              ! Loop counters 

   do i = 10, 100, 10                        ! Start of outer loop 
      do j = 1, 3                            ! Start of inner loop 
         print *, "i, j = ", i, j 
      end do                                 ! End of inner loop 
      print *                                ! Blank line 
   end do                                    ! End of outer loop 

end program nested 

5.6 Non-Integer Steps 

The do loop counter must be an integer (to avoid round-off errors). To increment x in a non-integer sequence, e.g 

 0.5, 0.8, 1.1, ...  

Fortran 

- 15 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
you should work out successive values in terms of a separate integral counter by specifying: 
• 
• 
• 

an initial value (x0); 
a step size (Δx) 
the number of values to be output (Nx). 

The successive values are: 

x0,  x0 +Δx,  x0 +2Δx,  … , x0 +(Nx-1)Δx. 

The ith value is 

x0  + (i – 1)Δx       for i = 1, … , Nx. 

program xloop 
   implicit none 
   real x                                     ! Value to be output 
   real x0                                    ! Initial value of x 
   real dx                                    ! Increment in x 
   integer nx                                 ! Number of values  
   integer i                                  ! Loop counter 

   print *, "Input x0, dx, nx"                ! Request values 
   read *, x0, dx, nx     

   do i = 1, nx                               ! Start of repeated section 
      x = x0 + ( i - 1 ) * dx                 ! Value to be output  
      print *, x 
   end do                                     ! End of repeated section 

end program xloop 

If one only uses the variable x once for each of its values (as above) one could simply combine the lines 
      x = x0 + ( i – 1 ) * dx                
      print *, x 
as 
      print *, x0 + ( i – 1 ) * dx 
There is then no need for a separate variable x. 

5.7 Implied Do Loops 

This highly-compact syntax is often used to initialise arrays (see later) or for input/output of sequential data. 

The general form is 
   ( expression, index = start, end [, stride] ) 
and, like any other do-loop, it may be nested. 

For example, the above lines 
   do i = 1, nx 
      x = x0 + ( i - 1 ) * dx 
      print *, x 
   end do                                      
can be condensed to the single line 
   print *, ( x0 + ( i - 1 ) * dx, i = 1, nx ) 
(but note that, unless print * is replaced by a suitable formatted write - see later – then output will all be on one line). 

Fortran 

- 16 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. DECISION-MAKING: if AND select 

See Sample Programs B  

Often a computer is called upon to perform one set of actions if some condition is met, and (optionally) some other set if it is not. 
This  branching  or  conditional  action  can  be  achieved  by  the  use  of  IF  or  CASE  constructs.  A  very  simple  use  of  if  ... 
else was given in the quadratic-equation program of Section 3. 

6.1 The if Construct 

There are several forms of if construct. 

(i) Single statement. 
   if ( logical expression ) statement 

(ii) Single block of statements. 
   if ( logical expression ) then 

things to be done if true 

   end if 

(iii) Alternative actions. 
   if ( logical expression ) then 

things to be done if true 

   else 

things to be done if false 

   end if 

(iv) Several alternatives (there may be several else ifs, and there may or may not be an else). 
   if ( logical expression-1 ) then 

......... 

   else if ( logical expression-2 ) then 

......... 

   [else  

......... 

                          ] 
   end if 

As with do loops, if constructs can be nested. (Again, indentation is very helpful for identifying code structure). 

Fortran 

- 17 - 

David Apsley 

 
 
 
 
 
 
 
 
       
 
 
 
             
 
             
 
 
 
 
 
 
6.2 The select Construct1 

The  select  construct  is  a  convenient  (and  sometimes  more  readable  and/or  efficient)  alternative  to  an  if ... else  if 
... else construct.  It  allows  different  actions  to  be  performed  depending  on  the  set  of  outcomes  (selector)  of  a  particular 
expression. 

The general form is: 
   select case ( expression ) 
      case ( selector-1 ) 

block-1 

      case ( selector-2 ) 

block-2 

      [case default 
default block 

                          ] 
   end select 

expression is an integer, character or logical expression. It is often just a simple variable. 
selector-n is a set of values that expression might take. 
block-n is the set of statements to be executed if expression lies in selector-n. 
case default is used if expression does not lie in any other category. It is optional. 

Selectors are lists of non-overlapping integer or character outcomes, separated by commas. Outcomes can be individual values 
(e.g. 3, 4, 5, 6) or ranges (e.g. 3:6). These are illustrated below and in the week’s examples.  

Example. What type of key have I pressed? 

program keypress 
   implicit none 
   character letter 

   print *, "Press a key" 
   read *, letter 

   select case ( letter ) 

      case ( 'A', 'E', 'I', 'O', 'U', 'a', 'e', 'i', 'o', 'u' ) 
         print *, "Vowel" 

      case ( 'B':'D', 'F':'H', 'J':'N', 'P':'T', 'V':'Z', & 
             'b':'d', 'f':'h', 'j':'n', 'p':'t', 'v':'z'  ) 
         print *, "Consonant" 

      case ( '0':'9' ) 
         print *, "Number" 

      case default 
         print *, "Something else" 

   end select 

end program keypress 

1 Similar to, but more flexible than, the switch construct in C or C++ and the match construct in Python. 

Fortran 

- 18 - 

David Apsley 

 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
7. ARRAYS 

See Sample Programs C  

In geometry it is common to denote coordinates by  x1, x2, x3 or {xi}. The elements of matrices are written as a11, a12, ..., amn or 
{aij}. These are examples of subscripted variables or arrays. 

Mathematically, we  often  denote the whole array by its unsubscripted name; e.g.  x for {xi} or   a for  {aij}.  Whilst  subscripted 
variables are important in any programming language, it is the ability to refer to an array as a whole, without subscripts, which 
makes Fortran particularly valuable in engineering. The ability to refer to just segments of it, e.g. the array section x(4:10) is 
just the icing on the cake. 

When referring to individual elements, subscripts are enclosed in parentheses; e.g. x(1), a(1,2), etc.2 

7.1 One-Dimensional Arrays (Vectors) 

Example. Consider the following program to fit a straight line to the set of points (x1,y1), (x2,y2), … , (xn,yn) and 
then print them out, together with the best-fit straight line. The data file is assumed to be of the form shown 
right and the best-fit straight line is 
∑ 𝑥𝑦
𝑛
∑ 𝑥2
𝑛

 ,     𝑐 = 𝑦̅ − 𝑚𝑥̅ 

∑ 𝑦
𝑛

∑ 𝑥
𝑛

 ,     𝑦̅ =

 where 

where 

− 𝑥̅ 2

− 𝑥̅𝑦̅

𝑚 =

𝑥̅ =

n 
x1 
x2 
... 
xn 

y1 
y2 

yn 

(Input/output using files will be covered more fully in Section 10. Just accept the read() and write() statements for now.) 

program regression 
   implicit none 
   integer n                                  ! Number of points 
   integer i                                  ! A counter 
   real x(100), y(100)                        ! Arrays to hold the points 
   real sumx, sumy, sumxy, sumxx              ! Various intermediate sums 
   real m, c                                  ! Line slope and intercept 
   real xbar, ybar                            ! Mean x and y 

   sumx = 0.0; sumy = 0.0; sumxy = 0.0; sumxx = 0.0 
                                              ! Initialise sums 
   open( 10, file = "pts.dat" )               ! Open the data file; attach to unit 10 
   read( 10, * ) n                            ! Read number of points 

   ! Read the rest of the marks, one per line, and add to sums 
   do i = 1, n                   
      read( 10, * ) x(i), y(i) 
      sumx  = sumx  + x(i) 
      sumy  = sumy  + y(i) 
      sumxy = sumxy + x(i) * y(i) 
      sumxx = sumxx + x(i) ** 2 
   end do 
   close( 10 )                                ! Finished with the data file 

   ! Calculate best-fit straight line 
   xbar = sumx / n     
   ybar = sumy / n 
   m = ( sumxy / n - xbar * ybar ) / ( sumxx / n - xbar ** 2 ) 
   c = ybar - m * xbar  

   print *, "Slope = ", m 
   print *, "Intercept = ", c 
   print "( 3( 1x, a10 ) )", "x", "y", "mx+c" 
   do i = 1, n 
      print "( 3( 1x, es10.3 ) )", x(i), y(i), m * x(i) + c 
   end do 

end program regression 

2 Note that languages like C, C++ and Python use (separate) square brackets for subscripts; e.g. x[1], a[1][2]. 

Fortran 

- 19 - 

David Apsley 

cmxy+= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many basic features of arrays are illustrated by this example. We will then use modern Fortran to improve it. 

7.2 Array Declaration 

Like any other variables, arrays need to be declared at the start of a program unit and memory space assigned to them. However, 
unlike  scalar  variables,  array  declarations  require  both  a  type  (integer,  real,  complex,  character,  logical,  or  a 
derived type) and a size or dimension (number of elements). 

In  this  case  the  two  one-dimensional  (rank-1)  arrays  x  and  y  can  be  declared  as  of  real  type  with  100  elements  by  the  type-
declaration statement 
   real x(100), y(100) 
or using the dimension attribute: 
   real, dimension(100) :: x, y 

Actually, since “100” is a “magic number”  that we  might need to change consistently in  many places if we wished to change 
array size, then it is safer practice to declare array size as a single parameter, e.g.: 
   integer, parameter :: MAXSIZE = 100 
   real x(MAXSIZE), y(MAXSIZE) 

By  default,  the  first  element  of  an  array  has  subscript  1.  It  is  possible  to  make  the  array  start  from  subscript  0  (or  any  other 
positive or negative integer) by declaring the lower array bound as well. For example, to start at 0 instead of 1: 
   real x(0:99) 
Warning: in the C, C++ and Python programming languages the lowest subscript is 0 and you can’t change that! 

7.3 Dynamic Arrays 

An  obvious  problem  arises.  What  if  the  number  of  points  n  is  greater  than  the  declared  size  of  the  array  (here,  100)?  Well, 
different compilers will do different and unpredicatable things – most resulting in crashes. 

One  not-very-satisfactory  solution  is  to  check  for  adequate  space,  prompting  the  user  to  recompile  if  necessary  with  a  larger 
array size: 
   read( 10, * ) n 
   if ( n > MAXSIZE ) then 
      print *, "Sorry, n > MAXSIZE. Please recompile with larger array" 
      stop 
   end if 

It is probably better to keep out of the way of administrative staff if they encounter this error message! 

A far better solution is to use dynamic memory allocation: that is, the array size is determined (and computer memory allocated) 
at run-time, not in advance during compilation. To do this one must use allocatable arrays as follows. 

(i) In the declaration statement, use the allocatable attribute; e.g. 
   real, allocatable :: x(:), y(:) 
Note that the shape, but not size, is indicated at compile-time by a single colon (:). 

(ii) Once the size of the arrays has been identified at run-time, allocate them the required amount of memory: 
   read( 10, * ) n 
   allocate( x(n), y(n) ) 

(iii) When the arrays are no longer needed, recover memory by de-allocating them: 
   deallocate( x, y ) 

(Additional comments about automatic allocation and deallocation are given later.) 

Fortran 

- 20 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
7.4 Array Input/Output and Implied do Loops 

In the example, the lines 
   do i = 1, n 
      read( 10, * ) x(i), y(i) 
      ... 
   end do 
mean that at most one pair of points can be input per line. With an implied do loop: 
   read( 10, * ) ( x(i), y(i), i = 1, n ) 
the  program will simply read the  first  n data  pairs (separated by spaces, commas or line breaks) that it encounters. As all the 
points are read in one go, they no longer need to be on separate lines, but are taken in order of availability. 

A similar statement can be used for output. However, note that 
   write( 11, * ) ( x(i), y(i), i = 1, n ) 
will write successive pairs out on the same line, unless told to do otherwise by a formatted record; e.g. 
   write( 11, "( 2( 1x, es10.3 )" ) ( x(i), y(i), i = 1, n ) 

If we are to read or write a single array to its full capacity, then even the implied do loop is unnecessary; e.g.  
   read( 10, * ) x 
will read enough values to populate x fully. 

7.5 Elemental Operations 

Sometimes we want to do the same thing to every element of an array. In the above example, for each mark we form the square 
of that mark and add to a sum. The array expression 
   x * x 
is a new array with elements {xi

2} The expression 

sum( x * x ) 

therefore produces xi

2. (See the sum function later.) 

Using many of these array features a shorter version of the program is given below. Note that use of the intrinsic function  sum 
obviates the need for extra variables to hold intermediate sums and there is a one-line implied do loop for both input and output. 

program regression 
   implicit none 
   integer n                                  ! Number of points 
   integer i                                  ! A counter 
   real, allocatable :: x(:), y(:)            ! Arrays to hold the points 
   real m, c                                  ! Line slope and intercept 
   real xbar, ybar                            ! Mean x and y 

   open( 10, file = "pts.dat" )               ! Open data file; attach to unit 10 
   read( 10, * ) n                            ! Read number of points 
   allocate( x(n), y(n) )                     ! Allocate memory to x and y 
   read( 10, * ) ( x(i), y(i), i = 1, n )     ! Read the rest of the marks 
   close( 10 )                                ! Finished with the data file 

   ! Calculate best-fit straight line 
   xbar = sum( x ) / n                        ! Use intrinsic function sum() 
   ybar = sum( y ) / n 
   m = ( sum( x * y ) / n - xbar * ybar ) &   ! Use array operations x * y and x * x 
     / ( sum( x * x ) / n - xbar ** 2   )                          
   c = ybar - m * xbar  

   print *, "Slope = ", m 
   print *, "Intercept = ", c 
   print "( 3( 1x, a10     ) )", "x", "y", "mx+c" 
   print "( 3( 1x, es10.3 ) )", ( x(i), y(i), m * x(i) + c, i = 1, n ) 

   deallocate( x, y )                         ! Recover memory space (unnecessary here) 

end program regression 

Note that here the value n is assumed to be given as the first line of the file. If this is not given then a reasonable approach is 
simply to read the file twice: the first time to count data pairs, the second to read them into an array allocated to the required size. 

Fortran 

- 21 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
7.6 Matrices and Higher-Dimension Arrays 

An mn array of numbers of the form 

is called a matrix (or rank-2 array). The typical element is denoted aij. It has two subscripts. 

Fortran allows matrices (two-dimensional arrays) and, in fact, arrays of up to 7 dimensions. (However, entities of the form aijklmno 
have never found much application in engineering!) 

In Fortran the declaration and use of a real 33 matrix might look like 
   real A(3,3) 
   A(1,1) = 1.0;   A(1,2) = 2.0;   A(1,3) = 3.0 
   A(2,1) = 4.0 
            etc. 
Other (better) methods of initialisation will be discussed below. 

Matrix Multiplication 

Suppose A, B and C are 33 matrices declared by 
   real, dimension(3,3) :: A, B, C 

The statement 
   C = A * B 
does element-by-element multiplication; i.e. each element of C is the product of the corresponding elements in A and B. 

To do “proper” matrix multiplication use the standard matmul function: 
   C = matmul( A, B ) 

Obviously matrix multiplication is not restricted to 33 matrices. However, for matrix multiplication to be legitimate, matrices 
must be conformable; i.e. the number of columns of A must equal the number of rows of B. 

A similarly useful function is that computing the transpose of a matrix: 
   C = transpose( A ) 

7.7 Terminology 

The rank of an array is the number of dimensions. 
The extents of an array are the number of elements in each dimension. 
The shape of an array is the collection of extents. 
The size of an array is the total number of elements (i.e. the product of the extents). 

7.8 Array Initialisation 

One-dimensional arrays 

The oldest forms of initialisation are: 
• 

separate statements; e.g, 
   A(1) = 2.0;   A(2) = 4.0;   A(3) = 6.0;   A(4) = 8.0;   A(5) = 10.0 

• 

• 

data statement: 
   data A / 2.0, 4.0, 6.0, 8.0, 10.0 / 

loop and formula (if there is one): 
   do i = 1, 5 
      A(i) = 2 * i 
   end do 

Fortran 

- 22 - 

David Apsley 

mnmnaaaa1111 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• 

reading from file 

With modern Fortran we can do whole-array assignments or array operations: 
• 

whole-array assignment (see Section 7.10 below) to a constant: 
   A = 2.0 
or in terms of other arrays: 
   A = B + C 

• 

array constructor: either(/ .... /)or the more modern form [ .... ] 
   A = (/ 2.0, 4.0, 6.0, 8.0, 10.0 /) 
or  
   A = [ 2.0, 4.0, 6.0, 8.0, 10.0 ] 

Array constructors can be combined with a whole-array operation: 
   A = 2 * [ 1.0, 2.0, 3.0, 4.0, 5.0 ] 
or a combination of array constructor and implied do loop: 
   A = [ ( 2 * i, i = 1, 5 ) ] 

An  allocatable  array  can  be  automatically  allocated  and  assigned  (or  reallocated  and  reassigned)  without  a  separate 
allocate (or deallocate) statement. Thus: 
   real, allocatable :: A(:) 
   A = [ 2.0, 4.0, 6.0, 8.0, 10.0 ] 
will allocate the array as size 5, with no need for  
   allocate( A(5) ) 
in between. Moreover, if we subsequently write, for example, 
   A = [ ( 2 * i, i = 1, 10 ) ] 
then the array will be reallocated with a new size of 10. 

If we simply want to add more elements to an allocatable array then we can write, e.g., 
   A = [ A, 12.0, 14.0 ] 
This quietly forms a temporary array constructor from array A plus the new elements, then reallocates and reassigns A. 

In addition, locally allocated arrays (only existing within a single subroutine or function – see later) are automatically deallocated 
at the end of that procedure, without a need for a deallocate statement. 

Multi-Dimensional Arrays 

Similar statements can also be used to initialise multi-dimensional arrays. However, the storage order of elements is important. 
In Fortran, column-major storage is used; i.e. the first subscript varies fastest. For example, the storage order of a 33 matrix is 
   A(1,1), A(2,1), A(3,1), A(1,2), A(2,2), A(3,2), A(1,3), A(2,3), A(3,3) 
Warning: this storage order is the opposite convention to the C or C++ programming languages. 

As an example, suppose we wish to create the array 

1 2 3
4 5 6
7 8 9

with the usual matrix(row,column) indexing convention. 

If we try 
program main 
   implicit none 
   character(len=*), parameter :: fmt = "( 3( i2, 1x ) )" 
   integer row, col 
   integer A(3,3) 
   data A / 1, 2, 3, 4, 5, 6, 7, 8, 9 / 

   do row = 1, 3 
      write( *, fmt ) ( A(row,col), col = 1, 3 ) 
   end do 

end program main 

Fortran 

- 23 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
then we obtain, rather disconcertingly, 
 1  4  7 
 2  5  8 
 3  6  9 

We can compensate for the column-major order either by adjusting the order in the data statement: 
   data A / 1, 4, 7, 2, 5, 8, 3, 6, 9 / 
which is error-prone and rather hard work. Alternatively, we could retain the original data statement but simply transpose  A as 
our first executable statement: 
   data A / 1, 2, 3, 4, 5, 6, 7, 8, 9 / 
   A = transpose( A ) 

In  modern  usage  one  can  use  an  array  constructor  instead  of  a  data  statement.  Since,  however,  an  array  constructor  is  1-
dimensional it must be combined with a call to the reshape function to put it in the correct shape (here, 33): 
   A = reshape( [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 3, 3 ] ) 
   A = transpose( A ) 
The first argument to the reshape function is the 1-d array, the second is the shape (set of extents) of the intended output.  

These two lines, however, could also be written as just one with an order argument. The following also uses an implied DO 
loop: 
   A = reshape( [ ( i, i = 1, 9 ) ], [ 3, 3 ], order=[ 2, 1 ] ) 

These approaches all lead to the desired output 
 1  2  3 
 4  5  6 
 7  8  9 

7.9 Array Expressions 

Arrays  are  used  where  large  numbers  of  data  elements  are  to  be  treated  in  similar  fashion.  Fortran  allows  a  very  powerful 
syntactic shorthand to be used whereby, if the array name is used in a numeric expression without subscripts, then the operation 
is assumed to be performed on every element of an array. This is far more concise than older versions of Fortran, where it was 
necessary to use do loops, and, indeed many other computer languages. Moreover, this vectorisation often leads to substantially 
faster code. 

For example, suppose that arrays x, y and z are declared with, say, 10 elements: 
   real, dimension(10) :: x, y, z 

Assignment 

   x = 5.0 
sets every element of x to the value 5.0. 

Array Expressions 

   y = -3 * x 
Sets yi to –3xi for each element of the respective arrays. 

   y = x + 3 
Although 3 is only a scalar, yi is set to xi + 3 for each element of the arrays. 

   z = x * y 
Sets zi to xiyi for each element of the respective arrays. Remember: this is “element-by-element” multiplication. 

Array Arguments to Intrinsic Functions 

   y = sin( x ) 
Sets  yi  to  sin(xi)  for  each  element  of  the  respective  arrays.  sin  is  said  to  be  an  elemental  function,  as  are  most  of  Fortran’s 
intrinsic functions. In the Advanced course we shall see how to make our own functions do this. 

Fortran 

- 24 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.10 Array Sections 

An array section is a subset of an array and is denoted by a range operator 

lower : upper 

or 

lower : upper: stride 

for one particular dimension of the array. One or more of these may be omitted If lower is omitted it defaults to the lower bound 
of that dimension; if upper is omitted then it defaults to the upper bound. If stride is omitted then it defaults to 1. 

For example, if A is a rank-1 array with dimension 9 and elements 10, 20, 30, 40, 50, 60, 70, 80, 90 then 
   A(3:5) is [ 30, 40, 50 ] 
   A(:4) is [ 10, 20, 30, 40 ] 
   A(2::2) is [ 20, 40, 60, 80 ] 

Note that array sections are themselves arrays and can be used in whole-array and elemental operations. 

An important use is in reduction of rank for higher-rank arrays. For example, if A, B and C are rank-2 arrays (matrices) then 
   A(i,:) 
   B(:,j) 
Thus, 
   C(i,j) = sum( A(i,:) * B(:,j) ) 
forms the scalar product of the ith row of A and jth row of B, giving the(i,j) component of the matrix C = AB. 

is the ith row of A 
is the jth row of B 

7.11 The where Construct 

where is like an if construct applied to every element of an array. For example, to turn every non-zero element of an array A 
into its reciprocal, one could write 
   where ( A /= 0.0 ) 
      A = 1.0 / A 
   end where 

The element ( A /= 0.0 ) actually yields a mask, or logical array of the same shape as A, but whose elements are simply 
true or false. A similar logical mask is used in the array functions ALL and ANY in the next subsection. 

Note  that  the  individual  elements  of  A  are  never  mentioned.  {where,  else,  else  where,  end  where}  can  be  used 
whenever one wants to use a corresponding {if, else, else if, end if} for each element of an array. 

7.12 Array-handling Functions 

Fortran’s use of arrays is extremely powerful, and many intrinsic routines are built into the language to facilitate array handling. 
For example, a do-loop summation can be replaced by a single statement; e.g. 
   sumx = sum( x ) 
This uses the intrinsic function sum, which adds together all elements of its array argument. 

Most mathematical intrinsic routines are actually elemental, which means that they can be applied equally to scalar variables and 
arrays. 

For a full set of array-related functions please consult the recommended textbooks. However, subset that you may find useful are 
given below. 

A number of intrinsic routines exist to query the shape of arrays. Assume A is an array with 1 or more dimensions. Its rank is the 
number of dimensions; its extents are the number of elements in each dimension; its shape is the collection of extents. 

lbound( A ) 
lbound( A, i ) 
shape( A ) 
size( A ) 
size( A, i ) 
ubound( A ) 
ubound( A, i ) 

returns a rank-1 array holding the lower bound in each dimension. 
returns an integer holding the lower bound in the ith dimension. 
returns a rank-1 array giving the extents in each direction 
returns an integer holding the complete size of the array (product of its extents) 
returns an integer holding the extent in the ith dimension. 
returns a rank-1 array holding the upper bound in each dimension. 
returns an integer holding the upper bound in the ith dimension. 

Fortran 

- 25 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algebra of vectors (rank-1 arrays) 

dot_product( U, V ) 

returns the scalar product of U and V 

Algebra of matrices (rank-2 arrays): 

matmul( A, B ) 
transpose( A ) 

returns the matrix product (rather than elemental product) of arrays A and B 
returns the transpose of matrix A 

Reshaping arrays: 

reshape( A, S ) 

A is a source array, S is the 1-d array of extents to which it is to be to reshaped 

Scalar results: 

returns the sum of all elements of A 
returns the product of all elements of A 
returns the minimum value in A 
returns the maximum value in A 
returns the index of the minimum value in A 
returns the index of the maximum value in A 

sum( A ) 
product( A ) 
minval( A ) 
maxval( A ) 
minloc( A ) 
maxloc( A ) 
count( logical expr )  returns the number of elements of A fulfilling the logical condition 
all ( logical expr ) 
any( logical expr )  

returns .true. or .false. according as all elements of A fulfil the condition or not 
returns .true. or .false. according as any elements of A fulfil the condition or not 

An example of some of these for a rank-1 array is given below. 

program test 
   implicit none 
   integer :: A(10) = [ 2, 12, 3, 3, 6, 2, 8, 5, 5, 1 ] 
   integer :: value = 5 

   print *, "A: ", A 
   print *, "Size of A: ", size( A ) 
   print *, "Lower bound of A is ", lbound( A ) 
   print *, "Upper bound of A is ", ubound( A ) 
   print *, "Sum of the elements of A is ", sum( A ) 
   print *, "Product of the elements of A is ", product( A ) 
   print *, "Maximum value in A is ", maxval( A ) 
   print *, "Minimum value in A is ", minval( A ) 
   print *, "Location of maximum value in A is ", maxloc( A ) 
   print *, "Location of minimum value in A is ", minloc( A ) 
   print *, count( A == value ), " values of A are equal to ", value 
   print *, "Any value of A > 10? ", any( A > 10 ) 
   print *, "All value of A > 10? ", all( A > 10 ) 

end program test 

Output: 
 A:  2 12 3 3 6 2 8 5 5 1 
 Size of A:  10 
 Lower bound of A is  1 
 Upper bound of A is  10 
 Sum of the elements of A is  47 
 Product of the elements of A is  518400 
 Maximum value in A is  12 
 Minimum value in A is  1 
 Location of maximum value in A is  2 
 Location of minimum value in A is  10 
 2  values of A are equal to  5 
 Any value of A > 10?  T 
 All value of A > 10?  F 

Fortran 

- 26 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. TEXT HANDLING 

See Sample Programs C  

Fortran  (FORmula  TRANslation)  was  originally  developed  for  scientific  and  engineering  calculations,  not  word-processing. 
However, modern versions now have extensive text-handling capabilities. 

8.1 Character Constants and Variables 

A character constant (or  string) is a series of characters enclosed in delimiters, which may be either single (') or double (") 
quotes; e.g. 
   'This is a string'   or   "This is a string" 
The delimiters themselves are not part of the string. 

Delimiters of the opposite type can be used within a string with impunity; e.g. 
   print *, "This isn't a problem" 
However, if the bounding delimiter is to be included in the string then it must be doubled up; e.g. 
   print *, 'This isn''t a problem.' 

Character variables must have their length – i.e. number of characters – declared in order to set aside memory.  The following 
will declare a character variable word of length 10: 
   character(len=10) word 

To save counting characters, an assumed length (indicated by len=* or, simply, *) may be used for character variables with the 
parameter attribute; i.e. those whose value is fixed. e.g. 
   character(len=*), parameter :: UNIVERSITY = "Manchester" 

If len is not specified for a character variable then it defaults to 1; e.g. 
   character letter 

Character  arrays  are  simply  subscripted  character  variables.  Their  declaration  requires  a  dimension  statement  in  addition  to 
length; e.g. 
   character(len=3), dimension(12) :: months 
or, equivalently, 
   character(len=3) months(12) 
This array might then be initialised by, for example, 
   data months / "Jan", "Feb", "Mar", "Apr", "May", "Jun", & 
                 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"  / 
or declared and initialised together: 
   character(len=3) :: months(12) = [ "Jan", "Feb", "Mar", "Apr", "May", "Jun",& 
                                      "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" ] 

8.2 Character Assignment 

When  character  variables  are  assigned  they  are  filled  from  the  left  and  padded  with  blanks  if  necessary.  For  example,  if 
university is a character variable of length 7 then 
   university = "MMU" 
   fills university with "MMU    " 
   university = "Manchester"     fills university with "Manches" 

8.3 Character Operators 

The only character operator is // (concatenation) which simply sticks two strings together; e.g. 
   "Man" // "chester"   →   "Manchester" 

Fortran 

- 27 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.4 Character Substrings 

Character  substrings  may  be  extended  in  a  similar  fashion  to  sub-arrays;  (in  a  sense,  a  character  string  is  an  array  of  single 
characters). e.g. if city is "Manchester" then 
   city(2:5) is "anch" 
   city (:3) is "Man" 
   city (7:) is "ster" 
   city(5:5) is "h" 
   city( : ) is "Manchester" 

Note: if we want the ith letter then we cannot write city(i) as for arrays, but instead city(i:i). 

8.5 Comparing and Ordering 

Each  computer  system  has  a  character-collating  sequence  that  specifies  the  intrinsic  ordering  of  the  character  set.  The  most 
common  is  ASCII  (shown  below).  ‘Less  than’  (<)  and  ‘greater  than’  (>)  strictly  refer  to  the  position  of  the  characters  in  this 
collating sequence. 

0 

1 

2 

3 

30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

( 
2 
< 
F 
P 
Z 
d 
n 
x 

) 
3 
= 
G 
Q 
[ 
e 
o 
y 

space ! 
+ 
* 
5 
4 
? 
> 
I 
H 
S 
R 
] 
\ 
g 
f 
q 
p 
{ 
z 

4 

" 
, 
6 
@ 
J 
T 
^ 
h 
r 
| 

5 

# 
- 
7 
A 
K 
U 
_ 
i 
s 
} 

6 

$ 
. 
8 
B 
L 
V 
` 
j 
t 
~ 

7 

8 

& 
0 
: 
D 
N 
X 
b 
l 
v 

% 
/ 
9 
C 
M 
W 
a 
k 
u 
del   

9 

' 
1 
; 
E 
O 
Y 
c 
m 
w 

The ASCII character set. Characters 0-31 are control characters like [TAB] or [ESC] and are not shown. 

The Fortran standard requires that upper-case letters A-Z and lower-case letters a-z are separately in alphabetical order, that the 
numerals 0-9 are in numerical order, and that a blank space comes before both. It does not, however, specify whether numbers 
come before or after letters in the collating sequence, or lower case comes before or after upper case. Provided there is consistent 
case, strings can be compared on the basis of dictionary order. However, the standard gives no guidance when comparing letters 
with numerals or upper with lower case using <  and >. Instead, we  can use the  llt (logically-less-than) and  lgt (logically-
greater-than) functions, which ensure comparisons according to the ASCII ordering. Similarly there are lle (logically-less-than-
or-equal) and lge (logically-greater-than-or-equal) functions. 

Examples. The following logical expressions are all “true” (which may cause some controversy!): 
   "Manchester City" < "Manchester United" 
   "Mickey Mouse" > "Donald Trump" 
   "First year" < "Second year" 

Examples. 
   100 < 20       gives .false. as a numeric comparison 
   "100" < "20"   gives .true. as a string comparison (comparison based on the first character) 
and 
   LLT( "1st", "First" )   gives .true. by ASCII ordering according to first character. 

Fortran 

- 28 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.6 Intrinsic Procedures With Character Arguments 

The more common character-handling routines are given in Appendix A4. A full set is given in the recommended textbooks. 

Position in the Collating Sequence 

char( i ) 
ichar( c ) 

character in position i of the system collating sequence; 
position of character c in the system collating sequence. 

The system may or may not use ASCII as a collating system, but the following routines are always available: 
achar( i ) 
iachar( c ) 

character in position i of the ASCII collating sequence; 
position of character c in the ASCII collating sequence. 

The collating sequence may be used, for example, to sort names into alphabetical order or convert between upper and lower case, 
as in the following example. 

Example. Since the separation of  ‘b’ and ‘B’, ‘c’ and ‘C’ etc. in the collating sequence is the same as that between ‘a’ and ‘A’, 
the following subroutine may be used successively for each character to convert lower to upper case. If letter has lower case 
it will: 
• 
• 
• 

convert to its number using  ichar(  ) 
add the numerical difference between upper and lower case: ichar('A')-ichar('a') 
convert back to a character using char( ) 

subroutine uc( letter ) 
   implicit none 
   character (len=1) letter 

   if ( letter >= 'a' .and. letter <= 'z' ) then 
      letter = char( ichar( letter ) + ichar( 'A' ) - ichar( 'a' ) ) 
   end if 

end subroutine uc 

Length of String 

len( string ) 
trim( string ) 
len_trim( string ) 

Justification 

declared length of string, even if it contains trailing blanks; 
same as string but without any trailing blanks; 
length of string with any trailing blanks removed. 

adjustl( string ) 
adjustr( string ) 

left-justified string 
right-justified string 

Finding Text Within Strings 

index( string, substring ) 
scan( string, set ) 
verify( string, set ) 

position of first (i.e. leftmost) occurrence of substring in string 
position of first occurrence of any character from set in string 
position of first character in string that is not in set 

Each of these functions returns 0 if no such position is found. 
To search for the last (i.e. rightmost) rather than first occurrence, add a third argument .true., e.g.: 

index( string, substring, .true. ) 

Other 

repeat( string, ncopies ) 
e.g. 

produces a character made up of ncopies concatenations of string. 

character(len=*), parameter :: base = repeat( "ABC", 4 ) 

produces 

base = "ABCABCABCABC" 

Fortran 

- 29 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. FUNCTIONS AND SUBROUTINES 

See Sample Programs C  

All  major  computing  languages  allow  complex  and/or  repetitive  programs  to  be  broken  down  into  simpler  procedures  or 
subprograms,  each  carrying  out  particular  well-defined  tasks,  often  with  different  values  of  their  arguments.  In  Fortran  these 
procedures are called subroutines and functions. Examples of the action carried out by a single procedure might be: 

• 

calculate the distance 

of a point (x,y) from the origin; 

calculate 

• 
As these are likely to be needed several times, it is appropriate to code them as a distinct procedure. 

for a positive integer n 

9.1 Intrinsic Procedures 

Certain  intrinsic  procedures  are  defined  by  the  Fortran  standard  and  must  be  provided  by  an  implementation’s  libraries.  For 
example, the statement 
   y = x * sqrt( x ) 
invokes an intrinsic function sqrt, with argument x, and returns a value (in this case, the square root of its argument) which is 
then employed to evaluate the numeric expression. 

Useful mathematical intrinsic  procedures are listed in Appendix A4. The complete set required by the standard is given in  the 
recommended textbooks. Particular Fortran implementations may also supply additional procedures, but you would then be tied 
to that particular compiler.  

9.2 Program Units 

There are four types of program unit: 

main programs 
subroutines 
functions 
modules 

Each source file may contain one or more program units and is compiled separately. (This is why one requires a link stage after 
compilation.) The advantage of separating program units between source files is that other programs can make use of a particular 
subset of the routines. 

Main Programs 

Every Fortran program must contain exactly one main program which should start with a program statement. This may invoke 
functions or subroutines which may, in turn, invoke other procedures. 

Subroutines 

A subroutine is invoked by 
   call subroutine-name ( argument list ) 
The subroutine carries out some action according to the value of the arguments. It may or may not change the values of these 
arguments. There may be no arguments (in which case the brackets are optional). 

Functions 

A function is invoked simply by using its name (and argument list) in a numeric expression; e.g. a function radius: 
   distance = radius( x, y ) 
Within the function’s source code its name (without arguments) is treated as a variable and should be assigned a value, which is 
the value of the function on exit – see the example below3. A function should be used when a single variable is to be returned. It 
is permissible, but not usual practice, for a function to change its arguments – a better vehicle in that case would be a subroutine. 

3 An alternative version, using the name in a result clause, is given in the Advanced part of the course. 

Fortran 

- 30 - 

David Apsley 

22yxr+=1.2)...1(!−=nnn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Functions and subroutines are collectively called  procedures. A subroutine is like a void function, and a function like a type-
returning function in C or C++. 

Modules (see Section 11) 

Functions  and  subroutines  may  be  internal  (i.e.  contain-ed  within  and  only  accessible  to  one  particular  program  unit)  or 
external (and accessible to all). Related internal routines are better gathered together in special program units called  modules. 
Their contents are then made available collectively to other program units by the initial statement 
   use module-name 
Modules  have  many other uses  and  are  increasingly  the  way  that  Fortran  is  evolving; we  will  examine  some  of  them  in  later 
sections. 

The basic forms of main program, subroutines and functions  with no internal procedures are very similar and are given below. 
As usual, [ ] denotes something optional but, in these cases, it is strongly recommended. 

Main program 

[program [name]] 
   use statements 
   [implicit none] 
   type declarations 
   executable statements 
end [program [name]] 

Subroutines 

Functions 

subroutine name (argument-list) 
   use statements 
   [implicit none] 
   type declarations 
   executable statements 
end [subroutine [name]] 

[type] function name (argument-list) 
   use statements 
   [implicit none] 
   type declarations 
   executable statements 
end [function [name]] 

The first statement defines the type of program unit, its name and its arguments. function procedures must also have a return 
type. This must be declared either in the initial statement (as here) or in a separate type declaration within the routine itself. 

Procedures pass control back to the calling program when they reach the end statement. Sometimes it is required to pass control 
back  before  this.  This  is  effected  by  the  return  statement.  An  early  death  to  the  program  as  a  whole  can  be  achieved  by  a 
stop statement. 

Many actions  could be coded as either a function or a  subroutine. For example, consider a program which calculates distance 
from the origin, 

: 

(Using a function) 

program example 
   implicit none 
   real x, y 
   real, external :: radius 

   print *, "Input x, y" 
   read *, x, y 

   print *, "Distance = ", radius( x, y ) 

(Using a subroutine) 

program example 
   implicit none 
   real x, y 
   real radius 
   external distance 

   print *, "Input x, y" 
   read *, x, y 
   call distance( x, y, radius ) 
   print *, "Distance = ", radius 

end program example 

end program example 

!=============================== 

!=============================== 

real function radius( a, b ) 
   implicit none 
   real a, b 

subroutine distance( a, b, r ) 
   implicit none 
   real a, b, r 

   radius = sqrt( a ** 2 + b ** 2 ) 

   r = sqrt( a ** 2 + b ** 2 ) 

end function radius 

end subroutine distance 

In the first example, the calling program must declare the type of the function (here, real) amongst its other type declarations. 
It  is  optional, but good  practice,  to  identify  external  procedures  by  using  either  an  external  attribute  in  the  type  statement 
(first example) or a separate external statement (second example). This makes clear what external routines are being used and 

Fortran 

- 31 - 

David Apsley 

2/122)(yxr+= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ensures that if the Fortran implementation supplied an intrinsic  procedure of the same name then the external procedure would 
override  it.  (Function  names  can  themselves  be  passed  as  arguments;  in  that  case  the  external  is  obligatory  for  a  user 
procedure unless an explicit interface is supplied – see the Advanced course). 

Note that all variables in the functions or subroutines above have scope the program unit in which they are declared; that is, they 
have no connection with any variables of the same name in any other program unit. 

9.3 Procedure Arguments 

The arguments in the function or subroutine statement are called dummy arguments: they exist only for the purpose of 
defining that procedure and have no connection to other variables of the same name in other program units. The arguments used 
when the procedure is actually invoked are called the actual arguments. They may be variables (e.g. x, y), constants (e.g. 1.0, 
2.0) or expressions (e.g. 3.0 + x, or  2.0 / y), but they must be of the same type and number as the dummy arguments. 
For  example,  the  radius  function  above  could  not  be  invoked  as  radius( x )  (too  few  arguments)  or  as 
radius( 1, 2 ) (arguments of the wrong type: integer rather than real). Even if they are variables there is no reason why 
actual arguments have to have the same name as the dummy arguments (though that is quite common). On occasion there may be 
no arguments. 

You may wonder how it is, then, that many intrinsic procedures can be invoked with different types of argument. For example, in 
the statement 
   y = exp( x ) 
x  may  be  real or  complex,  scalar  or  array.  This  is  achieved  by  a process  known  as  overloading  and  exp  is  called  a  generic, 
elemental function. These properties are dealt with in the Advanced course. 

Passing by Name / Passing by Reference 

In Fortran, if the actual arguments are variables, they are passed  by reference, and their values will change if the values of the 
dummy  arguments  change  in  the  procedure.  If,  however,  the  actual  arguments  are  either  constants  or  expressions,  then  the 
arguments are passed by value; i.e. the values are copied into the procedure’s dummy arguments. 

Warning: in C, all arguments are, by default, passed by value – a feature that necessitates the use of pointers to change values. 
C++ has extended this to include implied pointers or “references”. 

Declaration of Intent 

Because input variables passed as arguments may be changed unwittingly if the dummy arguments change within a  procedure, 
or,  conversely,  because  a  particular  argument  is  intended  as  output  and  so  must  be  assigned  to  a  variable  (not  a  constant  or 
expression),  it  is  good  practice  to  declare  whether  dummy  arguments  are  intended  as  input  or  output  by  using  the  intent 
attribute. e.g. in the above example: 
   subroutine distance( a, b, r ) 
      real, intent(in) :: a, b 
      real, intent(out) :: r 
This signifies that dummy arguments a and b must not be changed within the subroutine and that the third actual argument must 
be a variable. There is also an intent(inout) attribute. 

9.4 The save Attribute 

By default, variables declared within a procedure do not retain their values between successive calls to the same procedure. This 
behaviour can be overridden by the save attribute; e.g. 
   real, save :: x 
which will store the value of x for the next time the routine is used. Variables initialised at declaration or by data statements are 
automatically saved. All variables in modules are also automatically saved (by all compilers that I know – it is unclear whether 
this is a requirement of the Fortran standard). 

save with a list of variables can also be used as a separate statement to save those variables: 
   real x, y, z 
   save x, y 
If save is used without any list then all variables in that program unit are saved. 

Fortran 

- 32 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.5 Array Arguments 

Arrays can be passed as arguments in much the same way as scalars, except that the procedure must know the dimensions of the 
array.  In  this  section  we  assume  that  they  are  passed  as  explicit-shape  arrays;  that  is,  array  dimensions  are  known  at compile 
time. (The Advanced course will look at other ways of specifying array size for a procedure argument.) 
• 

Fixed array size – usually for smaller arrays such as coordinate vectors; e.g. 
   subroutine geometry( x ) 

            real x(3) 

• 

Pass the array size as an argument; e.g. 
   subroutine geometry( ndim, x ) 
      real x(ndim) 

9.6 Character Arguments 

Dummy arguments of character type behave in a similar manner to arrays – their length must be made known to the procedure. 
However,  a  character  dummy  argument  may  always  be  declared  with  assumed  length  (determined by  the  length of  the  actual 
argument); e.g. 
      call example( "David" ) 
      ... 
   subroutine example( person ) 
      character(len=*) person   ! Determines the length from the actual argument 

Fortran 

- 33 - 

David Apsley 

 
 
 
  
 
 
 
 
 
 
 
10. INPUT/OUTPUT 

See Sample Programs D  

Hitherto we have used simple list-directed input/output (i/o) with the standard input/output devices (keyboard and screen): 
   read *, list 
   print *, list 
This section describes how to: 
• 
• 
• 

use formatted output to control the layout of results; 
read from and write to files; 
use additional specifiers to provide advanced i/o control. 

10.1 READ and WRITE 

General list-directed i/o is performed by the statements 
   read( unit, format ) list 
   write( unit, format ) list 

unit can be one of: 
• 
• 
• 

an asterisk *, meaning the standard i/o device (usually the keyboard/screen); 
a unit number in the range 1 to 99 which has been associated with an external file (see below); 
a character variable (internal file): this is the simplest way of interconverting numbers and strings. 

format can be one of: 
• 
• 
• 

an asterisk *, meaning list-directed i/o; 
a label associated with a format statement containing a format specification; 
a character constant or expression evaluating to a format specification. 

list is a set of variables or expressions to be input or output. 

In terms of the simpler i/o statements used before: 
   read( *, * ) 
is equivalent to 
   write( *, * )  is equivalent to 

 read * 
 print * 

10.2 Input/Output With Files 

Before an external file can be read from or written to, it must be associated with a  unit number by an open statement. e.g. to 
associate the external file input.dat (in the current working directory) with the unit number 10: 
   open( 10, file="input.dat" ) 

One can then read from the file using 
   read( 10, ... ) ... 
or write to the file using 
   write( 10, ... )  ... 

Although units are automatically disconnected at program end it is good practice (and it frees the unit number for re-use) if it is 
explicitly closed when no longer needed. For the above example, this means: 
   close( 10 ) 

In general, the unit number (10 in the above example) may be any number in the range 1-99. Historically, however, 5 and 6 have 
been preconnected to the standard input and standard output devices, respectively. 

The  example  above  shows  open  used  to  attach  a  file  for  sequential  (i.e.  beginning-to-end),  formatted  (i.e.  human-readable) 
access. This is the default and is all we shall have time to cover in this course. However, Fortran can be far more flexible  – see 
for example the recommended textbooks. 

Fortran 

- 34 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.3 Formatted WRITE 

In the output statement 
   write( unit, format ) list 
list  is  a  comma-separated  set  of  constants  or  variables  to  be  output,  unit  indicates  where  the  output  is  to  go,  whilst  format 
indicates the way in which the output is to be set out. If format is an asterisk * then the computer will choose how to set it out. 
However, if you wish to display output in a particular way, for example in neat columns, then you must specify the format more 
carefully. 

Alternative Formatting Methods 

The  following  code  fragments  are  equivalent  means  of  specifying  the  same  output  format.  They  show  how  i,  f  and  e  edit 
specifiers display the number 55 in integer, fixed-point and floating-point formats. 

(i) Using a format statement with a label (here 150): 
write( *, 150 ) 55, 55.0, 55.0 
... 
150 format( 1x, i3, 1x, f5.2, 1x, e8.2 ) 
The format statement can be put anywhere within the executable statements of that program unit. 

(ii) Putting the format directly into the write statement: 

write( *, "( 1x, i3, 1x, f5.2, 1x, e8.2 )" ) 55, 55.0, 55.0 

(iii) Putting the format in a character variable C (either in its declaration as here, or a subsequent assignment): 
character(len=*), parameter :: fmt = "( 1x, i3, 1x, f5.2, 1x, e8.2 )" 
... 
write( *, fmt ) 55, 55.0, 55.0 

Any of these will output (to the screen): 
 55 55.00 0.55e+02 

Terminology 

A record is an individual line of input/output. 
A format specification describes how data is laid out in (one or more) records. 
A label is a number in the range 1-99999 preceding a statement on the same line. The commonest uses are in conjunction with 

format statements and to indicate where control should pass following an i/o error. 

Edit Descriptors 

A format specification consists of a series of edit descriptors (e.g. i4, f7.3) separated by commas and enclosed by brackets. 
The commonest edit descriptors are: 

integer in a field of width w; note that i0 in output means “whatever length is necessary”; 
iw 
fw.d 
real, fixed-point format, in a field of width w with d decimal places; 
ew.d 
real, floating-point (exponential) format in a field of width w with d decimal places; 
real format in whichever of fw.d or gw.d is more appropriate to the output; 
gw.d 
npew.d  floating point format as above with n significant figures in front of the decimal point; 
esw.d  “scientific” notation; i.e. 1 significant figure in front of the decimal point; 
enw.d  “engineering” notation; i.e. multiples of 3 significant figures in front of the decimal point; 
lw 
aw 
a 
"text"  a character string actually placed in the format specification; 
nx 
tn 
/ 
* 
: 

n spaces 
move to position n of the current record; 
start a new record; 
repeat the following bracketed subformat as often as needed; 
finish the record here if there is no further data to be read/written. 

logical value (T or F) in a field of width w; 
character string in a field of width w; 
character string of length determined by the output list; for input: a whole line of data; 

Fortran 

- 35 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is only a fraction of the available edit descriptors – see the recommended textbooks. 

Notes: 
(1) 

(2) 

(3) 

(4) 

If the required number of characters is less than the specified width then the output will be right-justified in its field. 

(For numerical output) if the required number of characters exceeds the specified width then the field will be filled with 
asterisks. E.g, attempting to write 999 with edit descriptor i2 will result in **. 

Attempting to write output using an edit specifier of the wrong type (e.g. 3.14 in integer specifier i4) will result in a 
run-time – but not compile-time – error; try it so that you can recognise the error message. 

The  format  specifier  will  be  used  repeatedly  until  the  output  list  is  exhausted.  Each  use  will  start  a  new  record.  For 
example, 

         write( *, "( 1x, i2, 1x, i2, 1x, i2 )" ) ( i, i = 1, 5 ) 

will produce the following lines of output: 
   1  2  3 
   4  5 

(5) 

If the whole format specifier isn’t required (as in the last line above) the rest is simply ignored. 

Repeat Counts 

Format specifications can be simplified by collecting repeated sequences together in brackets with a repeat factor. For example, 
the code example above could also be written 
   write( *, "( 3( 1x, i2 ) )" ) ( i, i = 1, 5 ) 

Because the format string allows 3 integers per record, the line breaks after records result in two lines of output: 
   1  2  3 
   4  5 
However, the repeat count can also be *, which means “as often as necessary”: 
   write( *, "( *( 1x, i2 ) )" ) ( i, i = 1, 5 ) 
This produces 
   1  2  3  4  5 

Colon Editing 

CSV (comma-separated values) files – with data fields separated by commas – are widely used for tabular data, and can be easily 
read or written by Microsoft Excel. If we try to output a comma after every item, by, e.g., 
   write( *, "( *( i2, ’,’ ) )" ) ( i, i = 1, 5 ) 
then we obtain 
   1, 2, 3, 4, 5, 
with a trailing comma. The fix for this is to precede what we don’t want (just a comma in this instance) by :, which means “stop 
here if there is no more data”. So 
   write( *, "( *( i2, :, ’,’ ) )" ) ( i, i = 1, 5 ) 
produces 
   1, 2, 3, 4, 5 
without the trailing comma. 

Historical Baggage: Carriage Control 

It is recommended that the first character of an output record be a blank. This is best achieved by making the first edit specifier a 
1x (one blank space). In the earliest versions of Fortran the first character effected line control on a line printer. A blank meant 
‘start a new record’. Although such carriage control is long gone, a few i/o devices may still ignore the first character of a record. 

Fortran 

- 36 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.4 The read Statement 

In the input statement 
   read( unit, format ) list 
list is a set of variables to receive the data. unit and format are as for the corresponding write statement. 

Although  formatted  reads  are  possible  (an  example  is  given  in  the  example  programs  D),  it  is  uncommon  for  format  to  be 
anything other than * (i.e. list-directed input). If there is more than one variable in list then the input items can be separated by 
blank spaces, commas or simply new lines. 

Notes. 
(1) 

(2) 

Each  read  statement  will  keep  reading  values  from  the  input  until  the  variables  in  list  are  assigned  to,  even  if  this 
means going on to the next record. 

Each read statement will, by default, start reading from a new line, even if there is input data unread on the previous 
line. In particular, the statement 
   read( *, * ) 
(with no list) will simply skip a line of unwanted data. 

(3) 

The variables in list must correspond in type to the input data – there will be a run-time error if you try to read a number 
with a decimal point into an integer variable, or some text into a real variable, for example. 

Example. The following program reads the first two items from each line of an input file input.dat and writes their sum to a 
file output.dat. 

program io         
   implicit none 
   integer i 
   integer a, b 

   open( 10, file="input.dat"  ) 
   open( 20, file="output.dat" ) 

   do i = 1, 4 
      read( 10, * ) a, b 
      write( 20, * ) a + b    
   end do 

   close( 10 ) 
   close( 20 ) 

end program io 

A sample input file (input.dat) is: 
10   3 
-2  33 
3   -6 
40  15 

Exercise: 
(1) 

(2) 
(3) 
(4) 

Type  the  source  code  into  file  io.f90  (say)  and  the  input  data  into  input.dat  (saving  it  in  the  same  folder). 
Compile and run the program and check the output file. 
Modify the program to write the output to screen instead of to file. 
Modify the program to format the output in a tidy column. 
Try changing the input file and predicting/observing what happens. Note any run-time error messages. 
(i) 
(ii) 
(iii) 
(iv) 
(v) 

Change the first data item from 10 to 10.0 – why does this fail at run-time? 
Add an extra number to the end of the first line – does this make any difference to output? 
Split the last line with a line break – does this make any difference to output? 
Change the loop to run 3 times (without changing the input data). 
Change the loop to run 5 times (without changing the input data). 

Fortran 

- 37 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
    
    
    
 
 
 
 
 
 
 
 
 
 
10.5 Repositioning Input Files 

   rewind unit 
   backspace unit 

repositions the file attached to unit at the first record. 
repositions the file attached to unit at the start of the previous record. 

Obviously, neither will work if unit is attached to the keyboard! 

10.6 Additional Specifiers 

The general form of the read statement is 
   read ( unit, format[, specifiers] ) 
Some useful specifiers are: 
   iostat = integer-variable 
   err = label 
   end = label 
iostat  returns  zero  if  the  read  is  successful,  implementation-dependent  negative  integers  for  end-of-file  (EOF)  or  end-of-
record (EOR), and positive integers for other errors. 

assigns integer-variable with a number indicating status 
jump to label on an error (e.g. missing data or data of the wrong type); 
jump to label when the end-of-file marker is reached. 

Non-Advancing Input/Output 

By default, each read or write statement automatically concludes with a carriage return/line feed. This can be prevented with 
an advance="no" specifier; e.g. 
   write( *, "( a )", advance="NO" ) "Enter a number: " 
   read( *, * ) i 

Note that a format specifier (here, just "( a )" for any number of characters) must be used for non-advancing i/o, even for a 
simple output string. The following statement won’t work: 
   write( *, *, advance="no" ) "Enter a number: " 

Assuming ch has been declared as a character of length 1 then one character at a time can be read from a text file attached to 
unit 10 by: 
      read( 10, "( a1 )", iostat=io, advance="no" ) ch 
By testing the state of variable io after the end of each read (it will be 0 if the read is successful, non-zero otherwise), we can 
determine when we have reached the end of file. 

10.7 Internal Files – Characters 

Input  and  output  can  be  redirected  to  character  variables  rather  than  input  files.  (The  usage  is  very  close  to  the  use  of  a 
stringstream in C++.) This can be very useful for a number of applications, including: 
assembling format strings when their form isn’t known until run-time; 
• 
creating text snippets to use in graphical output; 
• 
hard-coding input and output for testing or demonstration, to avoid the need for input files (e.g. for online compilers). 
• 

program example 
   implicit none 
   integer i, n 
   character(len=100) input 
   real, allocatable :: x(:) 

   input = "5   2.3  1.8  0.9  0.1  -2.4"        ! Input data 
   read( input, * ) n                            ! Number of points 
   allocate( x(n) ) 
   read( input, * ) n, ( x(i), i = 1, n )        ! Reread number, then all data 
   write( *, "( a, *( 1x, f6.2 ) )" ) "Data is ", x 

end program example 

Data is    2.30   1.80   0.90   0.10  -2.40 

Fortran 

- 38 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. MODULES 

See Sample Programs D  

Modules are the fourth type of program unit (after main programs, subroutines and functions). They were new in Fortran 90 and 
typify modern programming practice. Modules will be used much more in the Advanced course. 

A module has the form: 
module module-name 
   type declarations 
[contains 
   internal procedures] 
end module [module-name] 

The main uses of a module are: 
• 
• 
• 
• 

to allow sharing of variables between multiple program units; 
to collect together related internal procedures (functions or subroutines); 
to provide explicit interfaces to user-defined types, advanced procedures etc.; 
to define a class in object-oriented programming. 

Other program units have access to these module variables and internal procedures via the statement 

use modulename 

which should be placed at the start of the program unit (before any implicit none or type statements). 

Modules  make  redundant  older  (and  now  deprecated)  elements  of  Fortran  such  as  common  blocks  (used  to  share  variables), 
statement functions (one-line internal functions). They also make redundant many of the applications of the include statement.  

By having a single place to collect shared variables, they avoid long argument lists and the need to modify code in many separate 
places if the variables to be shared change. Thus, they make it much easier to upgrade or modify complex code. 

11.1 Sharing Variables 

Variables are passed between one program unit and another via argument lists. For example a program may call a subroutine 
polars by 

call subroutine polars( x, y, r, theta ) 

The program passes x and y to the subroutine and receives r and theta in return. Any other variables declared in one program 
unit are completely unknown to the other, even if they have the same name. Other routines may also call  polars in the same 
way. 

Communication  by  argument  list  alone  is  OK  provided  the  argument  list  is  (a)  short;  and  (b)  unlikely  to  change  with  code 
development. Problems arise if: 
• 
• 

a large number of variables need to be shared between program units; (the argument list becomes long and unwieldy); 
code  is  under  active development;  (the  variables being  shared  may  need  to  be  changed,  and  will  have  to be  changed 
consistently in every program unit making that subroutine call). 

Modules  solve  these  problems  by  maintaining  a  central  collection  of  variables  which  can  be  modified  when  required.  Any 
changes need only be made in the module. A use statement makes this available to each procedure that needs it. 

11.2 Internal Functions 

Subroutines and functions can be external or can be internal to bigger program units. Internal procedures are accessible only to 
the program unit in which they are defined (which is a bit selfish!) and are only of use for short, simple functions specific to that 
program unit. The best vehicle for an internal function is a module, because its internal functions or subroutines are accessible to 
all the procedures that use that module. 

The following (somewhat trite) example illustrates how program cone uses a routine from module geom to find the volume of a 
cone.  Note the use statement in the main program and the structure of the module. The arrangement is convenient because if we 
later decide to add a new global variable or geometry-related function (say, a function volume_cylinder) it is easy to do so 
within the module. 

Fortran 

- 39 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
module Geom 
! Functions to compute areas and volumes 
   implicit none 

   ! Shared variables 
   real, parameter :: PI = 3.14159 

contains 
   ! Internal procedures 

   real function area_circle( r )          
      real r 
      area_circle = PI * r ** 2 
   end function area_circle 

   real function area_triangle( b, h )     
      real b, h 
      area_triangle = 0.5 * b * h 
   end function area_triangle 

   real function area_rectangle( w, l )    
      real w, l 
      area_rectangle = w * l 
   end function area_rectangle 

   real function volume_sphere( r )        
      real r 
      volume_sphere = ( 4.0 / 3.0 ) * PI * r ** 3 
   end function volume_sphere 

   real function volume_cuboid( w, l, h )  
      real w, l, h 
      volume_cuboid = w * l * h 
   end function volume_cuboid 

   real function volume_cone( r, h )       
      real r, h 
      volume_cone = PI * r ** 2 * h / 3.0 
   end function volume_cone 

end module Geom 

program cone 
   use Geom                  ! Declare use of module 
   implicit none 
   real radius, height 

   print *, "Input radius and height" 
   read *, radius, height 

   print *, "Volume: ", volume_cone( radius, height ) 

end program cone 

Note that the internal functions of the module (as well as any program units using the module) automatically have access to any 
module variables above the contains statement (here, just PI). 

11.3 Compiling Programs With Modules 

The  module  may  be  in  the  same  source  file  as other  program  units or  it  may  be  in  a  different  file.  To  enable  the  compiler  to 
operate correctly, however, the module must be compiled before any program units that use it. Hence, 
• 
• 

if it is in a different file then the module file should be compiled first; 
if it is in the same file then the module should come before any program units that use it. 

Compilation  results  in  a  special  file  with  the  same  root  name  but  the  filename  extension  .mod,  and,  if  there  are  internal 
procedures, an accompanying  object code file (filetype .o with the NAG compiler). 

Assuming that the program is in file cone.f90 and the module in file geom.f90, compilation and linking commands for the 

Fortran 

- 40 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
above example (with the NAG compiler) could be  

nagfor –c geom.f90 
nagfor –c cone.f90 
nagfor cone.o geom.o 

Done this way  there  are separate  compile and link stages. ‘–c’  means “compile only” and forces creation of an intermediate 
object file with filetype .o. The third command invokes the linker and creates an executable file with the default name a.exe. 

Alternatively, you may combine these commands and name the executable as cone.exe by: 

nagfor –o cone.exe geom.f90 cone.f90 

If  running  from  the  command  window  then,  rather  than  typing  them  repeatedly,  sequences  of  commands  like  these  can 
conveniently be put in a batch file (which has a filetype .bat). 

Fortran 

- 41 - 

David Apsley 

 
 
 
APPENDICES 

A1. Order of Statements in a Program Unit 

If a program unit contains no internal procedures then the structure of a program unit is as follows. 

program, function, subroutine or module statement 
use statements 

implicit none statement 
Specification statements 

type declarations and attributes 
interfaces 
data statements 
interfaces 

Executable statements 

format 
statements 

end statement 

Where internal procedures are to be used, a more general form would look like: 

program, function, subroutine or module statement 
use statements 

implicit none statement 
Specification statements 

type declarations and attributes 
interfaces 
data statements 
interfaces 

Executable statements  

format 
statements 

contains  

internal procedures – each of form similar to the above 

end statement 

Fortran 

- 42 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A2. Fortran Statements 

The  following  list  is  of  the  more  common  statements  and  is  not  exhaustive.  A  more  complete  list  may  be  found  in  the 
recommended textbooks. To deter you from using them, the table does not include elements of earlier versions of Fortran  – e.g. 
common  blocks,  double  precision  type,  equivalence  statements,  include  statements,  continue  and  (the 
infamous) goto – whose functionality has been replaced by better elements. 

Allocates dynamic storage. 
Form alias for a variable or expression 
Positions a file before the preceding record. 
Invokes a subroutine. 
Allows a selection of options. 
Declares character data type. 
Declares a polymorphic entity 
Disconnects a file from a unit. 
Declares complex data type. 
Indicates presence of internal procedures. 
Go immediately to next pass of a loop 
Used to initialise variables at compile time. 
Releases dynamic storage. 
Specifies the size of an array. 
Start of a repeat block. 
Start of a block to be repeated while some condition is true. 

allocate 
associate 
backspace 
call 
case 
character 
class 
close 
complex 
contains 
cycle 
data 
deallocate 
dimension 
do 
do while 
else, else if, else where  Conditional transfer of control. 
end program unit 
end construct 
exit 
external 
format 
function 
if 
implicit none 
import 
inquire 
integer 
interface 
intrinsic 
logical 
module 
namelist 
open 
nullify 
print 
procedure 
program 
read 
real 
return 
rewind 
save 
select 
stop 
subroutine 
type 
use 
where 
write 

Final statement in a program unit 
End of relevant construct (do, if, case, where, type, etc.) 
Allows exit from within a do construct. 
Specifies that a name is that of an external procedure. 
Specifies format for input or output. 
Names a function. 
Conditional transfer of control. 
Suspends implicit typing (by first letter). 
Import variables from host scope. 
Inquiries about input/output settings. 
Declares integer type. 
Interface defining procedure prototypes, operators, generic names etc. 
Specifies that a name is that of an intrinsic procedure. 
Declares logical type. 
Names a module. 
Declares groups of variables (mainly for input/output) 
Connects a file to an input/output unit. 
Put a pointer in a disassociated state. 
Send output to the standard output device. 
Declares features of a procedure (subroutine or function) 
Names a program. 
Transfer data from input device. 
Declares real type. 
Returns control from a procedure before hitting the END statement. 
Repositions a sequential input file at its first record. 
Save values of variables between invocations of a procedure. 
Transfer of control depending on the value of some expression. 
Stops a program before reaching the end statement. 
Names a subroutine. 
Defines a derived type. 
Enables access to entities in a module. 
if-like construct for array elements. 
Sends output to a specified unit. 

Fortran 

- 43 - 

David Apsley 

 
 
 
 
 
 
A3. Type Declarations 

Type statements: 

integer 
real 
complex 
logical 
character 
type( typename ) (user-defined, derived types) 

The following attributes may be specified. 

allocatable 
asynchronous 
deferred 
dimension 
elemental 
external 
intent 
intrinsic 
optional 
parameter 
pass, nopass 
pointer 
private 
protected 
public 
pure, impure 
recursive 
save 
target 
volatile 

Variables may also have a kind, which will affect the numerical precision with which they are stored. 

A4. Intrinsic Routines 

A comprehensive list can be found in the recommended textbooks or in the compiler’s help files. 

Mathematical Functions 
(Arguments x, y etc. can be real or complex, scalar or array unless specified otherwise) 

cos( x ), sin( x ), tan( x )  – trigonometric functions (arguments are in radians) 
acos( x ), asin( x ), atan( x ) – inverse trigonometric functions 
atan2( y, x ) - inverse tangent of y/x in the range - to  (real arguments) 
cosh( x ), sinh( x ), tanh( x ) – hyperbolic functions 
acosh( x ), asinh( x ), atanh( x ) – inverse hyperbolic functions (only from F2008) 
exp( x ), log( x ), log10( x ) – exponential, natural log, base-10 log functions 
sqrt( x ) – square root 
abs( x ) – absolute value (integer, real or complex) 
max( x1, x2, ... ), min( x1, x2, ... ) – maximum and minimum (integer or real) 
modulo( x, y ) – x modulo y (integer or real) – i.e. pure mathematical idea of modulus 
mod( x, y ) – remainder when x is divided by y – i.e. truncates toward zero 
sign( x, y ) – absolute value of x with sign of y (integer or real) 

(A number of other special functions are available; e.g. Bessel functions, gamma function, error function) 

Type Conversions 

int( x ) – converts real to integer type, truncating towards zero 
nint( x ) – nearest integer 
ceiling( x ), floor( x ) – nearest integer greater than or equal, less than or equal  
real( x ) – convert to real 
cmplx( x ) or cmplx( x, y ) – real to complex 
conjg( z ) – complex conjugate (complex z) 
aimag( z ) – imaginary part (complex z) 
sign( x, y ) – absolute value of x times sign of y 

Fortran 

- 44 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Character-Handling Routines 

char( i ) – character in position i of the system collating sequence; 
ichar( c ) – position of character c in the system collating sequence. 
achar( i ) – character in position i of the ASCII collating sequence; 
iachar( c ) – position of character c in the ASCII collating sequence. 

llt( stringA, stringB ), lle( stringA, stringB ),  
lgt( stringA, stringB ), lge( stringA, stringB ) 
– lexical comparison according to ASCII collating sequence. 

len( string ) – declared length of string, even if it contains trailing blanks; 
trim( string ) – same as string but without any trailing blanks; 
len_trim( string ) – length of string with any trailing blanks removed; 
repeat( string, ncopies ) – multiple copies of string. 

adjustl(string ) – left-justified string 
adjustr(string ) – right-justified string 

index( string, substring ) – position of first occurrence of substring in string 
scan( string, set ) – position of first occurrence of any character from set in string 
verify(string, set ) – position of first character in string that is not in set 

Array Functions 

dot_product( vector_A,  vector_B ) – scalar product (integer or real) 
matmul( matrix_A,  matrix_B ) – matrix multiplication (integer or real) 
transpose( matrix ) – transpose of a matrix 
maxval( arra y ), minval( array ) – maximum and minimum values (integer or real) 
product( arra y ) – product of values (integer, real or complex) 
sum( arra y ) – sum of values (integer, real or complex) 
norm2( array ) – Euclidean norm 
count( array logical expr ) – number satisfying condition 
all( array logical expr ), any( array logical expr )– all or any satisfying condition? 

lbound( array ) – lower bound in each dimension. 
lbound( array, i ) – lower bound in the ith dimension. 
shape( array ) – extents in each direction 
size( array ) – complete size of the array (product of its extents) 
size( array, i ) – extent in the ith dimension. 
ubound( array ) – upper bound in each dimension. 
ubound( array, i ) – upper bound in the ith dimension. 

Bit Operations 

bit_size( i ) – number of bits in integer i 
btest( i, pos ) – test if bit in position pos is set 
ibclr( i, pos ), ibset( i, pos ) – clears or sets bit in position pos 
iand( i, j ), ior( i, j ), ieor( i, j ) – bitwise and, or, exclusive or 
not( i ) – bitwise not 
ishft( i, shift ) – bitwise left-shift (or right-shift if shift is negative) 
ishftc( i, shift ) – bitwise circular left-shift (or right-shift if shift is negative) 
ishftl( i, shift ), ishftr( i, shift )  – bitwise left-shift, right-shift 
ble( i, j ), blt( i, j ), bge( i, j ), bgt( i, j ) – bitwise comparisons 
popcnt( i ) – number of non-zero bits in i 

Inquiry Functions 

allocated( array ) 
associated( pointer ) 
present( argument ) 

Fortran 

- 45 - 

David Apsley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time 

call date_and_time( [date] [,time] [,zone] [,values] ) 
call system_clock( [count] [,count_rate] [,count_max] ) 
call cpu_time( time ) 

Random Numbers 

call random_number( x ) – x is scalar or array; output is random in [0,1) 
call random_seed( [size] [put] [get] ) 

Invocation 

command_argument_count() 
call get_command( [command] [,length] [status ] ) 
call get command_argument( number [,value] [length] [,status] 

Operating System 

call execute_command_line( command [,wait] [,exitstat] [,cmdstat] ) 
call get_environment_variable( name [,value] [length] [,status] [,trim_name] ) 

A5. Operators 

Numeric Intrinsic Operators 

Operator 
** 
* 
/ 
+ 
- 

Action 
Exponentiation 
Multiplication 
Division 
Addition or unary plus 
Subtraction or unary minus 

Precedence (1 is highest) 
1 
2 
2 
3 
3 

Relational Operators 

Operator 

Operation 

<  or .lt.  less than 
<= or .le.  less than or equal 
== or .eq.  equal 
/= or .ne.  not equal 
>  or .gt.  greater than 
>= or .ge.  greater than or equal 

Logical Operators 

Operator 
.not. 
.and. 
.or. 
.eqv. 
.neqv. 

Action 
logical negation 
logical intersection 
logical union 
logical equivalence 
logical non-equivalence 

Precedence (1 is highest) 
1 
2 
3 
4 
4 

Character Operators 

//  

concatenation 

In the Advanced course it is shown how the user can define their own types and operators. 

Fortran 

- 46 - 

David Apsley