Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 212,010 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
11 

Calculus 

Kenneth E. Iverson 

Copyright  Β© 2002 Jsoftware Inc. All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2  Calculus 

Preface 

Calculus  is  at  once  the  most  important  and  most  difficult  subject  encountered  early  by 
students  of  mathematics;  introductory  courses  often  succeed  only  in  turning  students 
away from mathematics, and from the many subjects in which the calculus plays a major 
role. 

The present text introduces calculus in the informal manner adopted in my Arithmetic [1], 
a  manner  endorsed  by  Lakatos  [2],  and  by  the  following  words  of  Lanczos  from  his 
preface to [3]: 

Furthermore, the author has the notion that mathematical formulas have their β€œsecret 
life”  behind  their  Golem-like  appearance.  To  bring  out  the  β€œsecret  life”  of 
mathematical relations by an occasional narrative digression does not appear to him 
a profanation of the sacred rituals of formal analysis but merely an attempt to a more 
integrated way of understanding. The reader who has to struggle through a maze of 
β€œlemmas”, β€œcorollaries”, and β€œtheorems”, can easily get lost in formalistic details, to 
the detriment of the essential elements of the results obtained. By keeping his mind 
on the principal points he gains in depth, although he may lose in details. The loss is 
not serious, however, since any reader equipped with the elementary tools of algebra 
and calculus can easily interpolate the missing details. It is a well-known experience 
that  the  only  truly  enjoyable  and  profitable  way  of  studying  mathematics  is  the 
method of β€œfilling in the details” by one’s own efforts. 

The scope is broader than is usual in an introduction, embracing not only the differential 
and  integral  calculus,  but  also  the  difference  calculus  so  useful  in  approximations,  and 
the partial derivatives and the fractional calculus usually met only in advanced courses. 
Such  breadth  is  achievable  in  small  compass  not  only  because  of  the  adoption  of 
informality, but also because of the executable notation employed. In particular, the array 
character of the notation makes possible an elementary treatment of partial derivatives in 
the manner used in tensor analysis. 

The  text  is  paced  for  a  reader  familiar  with  polynomials,  matrix  products,  linear 
functions, and other notions of elementary algebra; nevertheless, full definitions of such 
matters are also provided. 

 
Chapter 1  Introduction   3 

Table Of Contents 

Introduction ..............................................................................6 

A. Calculus .......................................................................................... 6 

B. Notation and Terminology.............................................................. 10 

C. Role of the Computer and of Notation............................................ 14 

D. Derivative, Integral, and Secant Slope ........................................... 14 

E. Sums and Multiples......................................................................... 15 

F. Derivatives of Powers ..................................................................... 16 

G. Derivatives of Polynomials............................................................. 17 

H. Power Series ................................................................................... 18 

I. Conclusion ....................................................................................... 20 

Differential Calculus.................................................................23 

A. Introduction .................................................................................... 23 

B. The derivative operator ................................................................... 24 

C. Functions Defined by Equations (Relations) .................................. 24 

D. Differential Equations..................................................................... 26 

E. Growth F d.1 = F...................................................................... 26 

F. Decay F d.1 = -@F ................................................................... 27 

G. Hyperbolic Functions F d.2 = F ............................................... 28 

H. Circular Functions F d.2 = -@F ............................................... 29 

I. Scaling.............................................................................................. 30 

J. Argument Transformations .............................................................. 31 

K.  Table of Derivatives ...................................................................... 31 

L. Use of Theorems ............................................................................. 33 

M. Anti-Derivative .............................................................................. 34 

N. Integral............................................................................................ 35 

Vector Calculus ........................................................................37 

A. Introduction .................................................................................... 37 

B. Gradient .......................................................................................... 38 

C.  Jacobian ......................................................................................... 40 

D. Divergence And Laplacian ............................................................. 42 

E. Symmetry, Skew-Symmetry, and Orthogonality ............................ 42 

F. Curl.................................................................................................. 45 

Difference Calculus ..................................................................47 

A. Introduction .................................................................................... 47 

B. Secant Slope Conjunctions ............................................................. 47 

C. Polynomials and Powers ................................................................. 48 

D. Stope Functions .............................................................................. 50 

 
 
 
 
4  Calculus 

E. Slope of the Stope ........................................................................... 51 

F. Stope Polynomials........................................................................... 52 

G. Coefficient Transformations........................................................... 53 

H. Slopes as Linear Functions ............................................................. 54 

Fractional Calculus ..................................................................59 

A. Introduction .................................................................................... 59 

B. Table of Semi-Differintegrals ......................................................... 61 

Properties of Functions ...........................................................65 

A. Introduction .................................................................................... 65 

B. Experimentation.............................................................................. 67 

C. Proofs.............................................................................................. 70 

D. The Exponential Family ................................................................. 70 

E. Logarithm and Power...................................................................... 71 

F. Trigonometric Functions ................................................................. 73 

G. Dot and Cross Products .................................................................. 77 

H. Normals .......................................................................................... 79 

Interpretations and Applications ............................................83 

A. Introduction .................................................................................... 83 

B. Applications and Word Problems ................................................... 84 

C. Extrema and Inflection Points......................................................... 85 

D. Newton's Method............................................................................ 87 

E. Kerner's Method.............................................................................. 89 

F. Determinant and Permanent ............................................................ 90 

G. Matrix Inverse................................................................................. 92 

H. Linear Functions and Operators ..................................................... 92 

I. Linear Differential Equations........................................................... 94 

J. Differential Geometry ...................................................................... 95 

K. Approximate Integrals .................................................................... 97 

L. Areas and Volumes ......................................................................... 101 

M. Physical Experiments..................................................................... 103 

Analysis.....................................................................................107 

A. Introduction .................................................................................... 107 

B. Limits .............................................................................................. 108 

C. Continuity ....................................................................................... 111 

D. Convergence of Series .................................................................... 111 

Appendix ...................................................................................117 

A. Polynomials .................................................................................... 117 

B. Binomial Coefficients ..................................................................... 119 

C. Complex Numbers .......................................................................... 119 

D. Circular and Hyperbolic Functions................................................. 120 

 
Chapter 1  Introduction   5 

E. Matrix Product and Linear Functions ............................................. 120 

F. Inverse, Reciprocal, And Parity ...................................................... 121 

Index ..........................................................................................126 

 
 
 
 
6  Calculus 

Chapter 
1 

Introduction 

A. Calculus 

Calculus is based on the notion of studying any phenomenon (such as the position of a 
falling  body)  together  with  its  rate  of  change,  or  velocity.  This  simple  notion  provides 
insight into a host of familiar things: the growth of trees or financial investments (whose 
rates  of  change  are  proportional  to  themselves);  the  vibration  of  a  pendulum  or  piano 
string; the shape of the cables in a powerline or suspension bridge; and the logarithmic 
scale used in music. 

In  spite  of  the  simplicity  and  ubiquity  of  its  underlying  notion,  the  calculus  has  long 
proven difficult to teach, largely because of the difficult notion of limits. We will defer 
this  difficulty  by  first  confining  attention  to  the  polynomials  familiar  from  high-school 
algebra. 

We begin with a concrete experiment of dropping a stone from a height of twenty feet, 
and noting that both the position and the velocity (rate of change of position) appear to 
depend upon (are functions of) the elapsed time. However, because of the rapidity of the 
process, we are unable to observe either with any precision.  

More  precise  observation  can  be  provided  by  recording  the  fall  with  a  video  camera, 
playing it back one frame at a time, and recording the successive positions in a vertical 
line on paper. A clearer picture of the motion can be obtained by moving the successive 
points  to  a  succession  of  equally  spaced  vertical  lines  to  obtain  a  graph  or  plot  of  the 
position against elapsed time. 

The  position  of  the  falling  stone  can  be  described  approximately  by  an  algebraic 
expression as follows: 

         p(t) = 20 - 16 * t * t 

We will use this definition in a computer system (discussed in Section B) to compute a 
table of times and corresponding heights, and then to plot the points detailed in the table. 
The  computer  expressions  may  be  followed  by  comments  (in  Roman  font)  that  are  not 
executed: 

   i.11                 First eleven integers, beginning at zero 
0 1 2 3 4 5 6 7 8 9 10 

t=:0.1*i.11             Times from 0 to 1 at intervals of one-tenth    

h=:20-16*t*t            Corresponding heights 

 
 
    
 
Chapter 1  Introduction   7 

   t,.h 
  0    20 
0.1 19.84 
0.2 19.36 
0.3 18.56 
0.4 17.44 
0.5    16 
0.6 14.24 
0.7 12.16 
0.8  9.76 
0.9  7.04 
  1     4 

   load ’plot’ 

   PLOT=:’stick,line’&plot 
   PLOT t;h 

The plot gives a graphic view of the velocity (rate of change of position) as the slopes of 
the lines between successive points, and emphasizes the fact that it is rapidly increasing 
in  magnitude.  Moreover,  the  table  provides  the  information  necessary  to  compute  the 
average velocity between any pair of points. 

For example, the last two rows appear as: 

   0.9  7.04 
     1     4 

and  subtraction  of  the  first  of  them  from  the  last  gives  both  the  change  in  time  (the 
elapsed time) and the corresponding change in position: 

   1 4 - 0.9 7.04 

 
 
 
 
 
 
 
8  Calculus 

0.1 _3.04 

Finally, the change in position divided by the change in time gives the average velocity: 

   _3.04 % 0.1    Division is denoted by % 
_30.4             The _ denotes a negative number 

The negative value of this velocity indicates that the velocity is in a downward direction. 

Both  the  table  and  the  plot  suggest  abrupt  changes  in  velocity,  but  smaller  intervals 
between points will give a truer picture of the actual continuous motion: 
   t=:0.01*i.101   Intervals of one-hundredth over the same range 
   h=:20-16*t*t 

   PLOT t;h 

This plot suggests that the actual (rather than the average) rate of change at any point is 
given by the slope of the tangent (touching line) to the curve of the graph. In terms of the 
table, it suggests the use of an interval of zero. 

But  this  would  lead  to  the  meaningless  division  of  a  zero  change  in  position  by  a  zero 
change  in  time,  and  we  are  led  to  the  idea  of  the  "limit"  of  the  ratio  as  the  interval 
"approaches" zero.  

For many functions this limit is difficult to determine, but we will avoid the problem by 
confining  attention  to  polynomial  functions,  where  it  can  be  determined  by  simple 
algebra.  

The velocity (rate of change of position) is also a function of t and, because it is derived 
from the function p, it is called the derivative of p . It also can be expressed algebraically 
as follows:    v(t) = -32*t. 
Moreover, since the velocity is also a function of t, it has a derivative (the acceleration) 
which is also called the second derivative of the original function p . 

 
 
    
 
 
 
 
 
 
Various notations (with various advantages) have been used for the derivative: 

Chapter 1  Introduction   9 

                                 .                               .. 
newton 
leibniz 

p 
d2y/d2t 

dy/dt 

p 

dny/dnt  (y = p (t)) 

modern 

p' 

p'' 

pn 

heaviside (J)  p D.1 

p D.2 

p D.n 

Heaviside also introduced the notion of D as a derivative operator, an entity that applies 
to a function to produce another function. This is a new notion not known in elementary 
algebra. 

In the foregoing we have seen that calculus requires three notions that will not have been 
met by most students of high school algebra: 

1.  The notion of the rate of change of a function. 

2.  The notion of an operator that applies to a function to produce a function. 

3.  The notion of a limit of an expression that depends upon a parameter whose 

limiting value leads to an indeterminate expression such as 0%0. 

Although  the  notion  of  an  operator  that  produces  a  function is not difficult in itself, its 
first  introduction  as  the  derivative  operator  (that  is,  jointly  with  another  new  notion  of 
rate of change) makes it more difficult to embrace. We will therefore begin with the use 
of simpler (and eminently useful) operators before even broaching the notion of rate of 
change. 

A further obstacle to the teaching of calculus (common to other branches of mathematics 
as  well)  is  the  absence  of  working  models  of  mathematical  ideas,  models  that  allow  a 
student to gain familiarity through concrete and accurate experimentation. Such working 
models are provided automatically by the adoption of mathematical notation that is also 
executable on a computer. 

In teaching mathematics, the necessary notation is normally introduced in context and in 
passing,  with  little  or  no  discussion  of  notation  as  such.  Notation  learned  in  a  simple 
context  is  often  expanded  without  explicit  comment.  For  example,  although  the 
significance of a fractional power may require discussion, the notations x1/2 and xm/n and 
xpi used for it may be silently adapted from the more restricted integer cases x2 and xn. 

Although  an  executable  notation  must  differ  somewhat  from  conventional  notation  (if 
only  to  resolve  conflicts  and  ambiguities),  it  is  important  that  it  be  introducible  in  a 
similarly casual manner, so as not to distract from the mathematical ideas it is being used 
to  convey.  The  subsequent  section  illustrates  such  use  of  the  executable  notation  J 
(available  free  from  webside  jsoftware.com)  in  introducing  and  using  vectors  and 
operators. 

 
 
 
 
 
10  Calculus 

B. Notation and Terminology 

The terminology used in J is drawn more from English than from mathematics: 

a)  Functions  such  as  +  and  *  and  ^  are  also  referred  to  as  verbs  (because 
they act upon nouns such as 3 and 4), and operators such as / and & are 
accordingly called adverbs and conjunctions, respectively. 

b)  The symbol =: used in assigning a name to a referent is called a copula, 
and  the  names  credits  and  sum  used  in  the  sentences  credits=: 
24.5  17  38  and  sum=:+/  are  referred  to  as  pronouns  and  proverbs 
(pronounced with a long o), respectively. 

c)  Vectors  and  matrices  are  also  referred  to  by  the  more  suggestive  terms 

lists and tables. 

Because  the  notation  is  executable,  the  computer  can  be  used  to  explore  and  elucidate 
topics with a clarity that can only be appreciated from direct experience of its use. The 
reader  is  therefore  urged  to  use  the  computer  to  do  the  exercises  provided  for  each 
section, as well as other experiments that may suggest themselves. 

To avoid distractions from the central topic of the calculus, we will assume a knowledge 
of some topics from elementary math (discussed in an appendix), and will introduce the 
necessary notation with a minimum of comment, assuming that the reader can grasp the 
meaning of new notation from context, from simple experiments on the computer, from 
the on-line Dictionary, or from the study of more elementary texts such as Arithmetic [1]. 
The remainder of this section is a computer dialog (annotated by comments in a different 
font) that introduces the main characteristics of the notation. 

The reader is urged to try the following sentences (and variants of them) on the computer: 

    3.45+6.78+0.01 
10.24 

   2*3 

6 
   2^3 
8 

   1 2 3 * 4 5 6 
4 10 18 

   2 < 3 2 1 
false) 
1 0 0 
2 <. 3 2 1 
2 2 1 

   (+: , -: , *: , %:) 16 
32 8 256 4 

   +/4 5 6 
15 

Plus 

Times  

Power (product of three twos) 

Lists or vectors 

Less  than  (1  denotes  true,  and  0  denotes 

Lesser of (Minimum) Related 
spellings denote related verbs 

Double, halve, square, square root 

The symbol / denotes the adverb insert 

 
 
 
 
 
 
 
 
   4+5+6 
15 

   */4 5 6 
120 

   3-5 
_2 
    -5 
_5 

Chapter 1  Introduction   11 

Verbs are ambivalent, with a meaning that 
depends on context; the symbol - denotes 
subtraction or negation according to context 

   2^1 2 3 
2 4 8 
   ^1 2 3 
2.71828 7.38906 20.0855 

The power function 

The exponential function 

   */4 5 6 
120 

A derived verb produced by an 
adverb is also ambivalent; the 

   1 2 3 */ 4 5 6 
 4  5  6 
 8 10 12 
12 15 18 

   a=: 1 2 3 
   b=: 4 5 6 7 
   powertable=: ^/ 
   c=: a powertable b 
   c 
 1   1   1    1 
16  32  64  128 
81 243 729 2187 

   +/ c 
98 276 794 2316 

   +/"1 c 
4 240 3240 

dyadic case of */ produces a multiplication table 

The copula (=:) can be used to assign names 
to nouns, verbs, adverbs, and conjunctions   

Adds together items (rows) of the table c 

The rank conjunction " applies its argument  
(here the function +/) to each rank-1 cell (list) 

   3"1 c                   The constant function 3 applied to each list of c 
3 3 3 
   3"1 b                   The constant function 3 applied to the list b        
3 
   3"0 b                   The constant function 3 applied to each atom of b 
3 3 3 

   x=: 4 
   1+x*(3+x*(3+x*(1)))     Parentheses provide punctuation 
125 
   1+x*3+x*3+x*1 
125 
   (3*4)+5 
17 
   3*4+5 
27 

as in high-school algebra. However,  
there is no precedence or hierarchy  
among verbs; each applies to the 
result of the entire phrase to its right 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
12  Calculus 

   tithe=: %&10 
   tithe 35 
3.5 
   log=: 10&^. 
   log 10 20 100 
1 1.30103 2 

   sin=: 1&o. 
   sin 0 1 1r2p1 
0 0.841471 1 

   x=:1 2 3 4 
   ^&3 x 
1 8 27 64 

The conjunction & bonds a dyad to a noun; result is 
a corresponding function of one argument (a monad) 

Sine (of radian arguments) 
Sine of 0, 1, and one-half pi 

Cube of x  

We  will  write informal proofs by writing a sequence of sentences to imply that each is 
equivalent  to  its  predecessor,  and  that  the  last  is  therefore  equivalent  to  the  first.  For 
example,  to  show  that  the  sum  of  the  first  n  odd  numbers  is  the  square  of  n,  we  begin 
with: 

The identity function ]causes display of result 

   ] odds=: 1+2*i.n=: 8 
1 3 5 7 9 11 13 15 
   |.odds 
15 13 11 9 7 5 3 1 

   odds + |.odds 
16 16 16 16 16 16 16 16 

   n#n 
8 8 8 8 8 8 8 8 

and then write the following sequence of equivalent sentences: 

   +/odds 
   +/|.odds 
   -:(+/odds) + (+/|.odds) 
   -:+/ (odds+|.odds) 
   +/ -:(odds+|.odds) 
   +/n#n 
   n*n 
   *:n 

Solutions or hints appear in bold brackets. Make serious attempts before consulting them. 

Exercises 

B1  To gain familiarity with the keyboard and the use of the computer, enter some of 
the sentences of this section and verify that they produce the results shown in the 
text. Do not enter any of the comments that appear to the right of the sentences. 

B2  To  test  your  understanding  of  the  notions  illustrated  by  the  sentences  of  this 
section,  enter  variants  of  them,  but  try  to  predict  the  results  before  pressing  the 
Enter key. 

B3  Enter p=: 2 3 5 7 11 and predict the results of +/p and */p; then review the 

discussion of parentheses and predict the results of -/p and %/p . 

 
 
 
 
 
 
 
 
Chapter 1  Introduction   13 

B4  Enter  i.  5  and  #p  and  i.#p  and  i.-#p  .  Then  state  the  meanings  of  the 

primitives # and i. . 

B5  Enter  asp=:  p  *  _1  ^  i.  #  p  to  get  a  list  of  primes  that  alternate  in  sign 
(enter asp alone to display them). Compare the results of -/p and +/asp and state 
in English the significance of the phrase -/ . 

[ -/ yields the alternating sum of a list argument] 

B6  Explore the assertion that %/a is the alternating product of the list a. 

[ Use arp=: p^_1^i.#p  ] 

B7  Execute (by entering on the computer) each of the sentences of the informal proof  
preceding these exercises to test the equivalences. Then annotate the sentences to 
state why each is equivalent to its predecessor (and thus provide a formal proof). 

B8  Experiment with, and comment upon, the following and similar sentences: 

      s=: '4%5' 

   |.s 

   do=: ". 

   do s 

   do |.s 

   |.i.5 

   |. 'I saw' 

[ Enclosing quotes produce a list of characters that may be manipulated like other 
lists and may, if they represent proper sentences, be executed by applying the verb 
". .] 

B9  Experiment with and comment upon: 

   ]a=: <1 2 3 

   >a 

   2*a 

   2*>a 

   ]b=: (<1 2 3),(<'pqrs') 

   |.b 

   #b  

   1 2 3;'pqrs' 

[ < boxes its argument to produce a scalar encoding; > opens it.] 

B10  Experiment with and comment upon: 

   power=:^ 

   with=:& 

   cube=:^ with 3 

   cube 1 2 3 4  

1 8 27 64 

   cube 

^&3 

[ Entering the name of a function alone shows its definition in linear form; 

 
 
 
 
 
 
14  Calculus 

the foreign conjunction !: provides other forms] 

B11   Press the key F1 (in the top row) to display the J vocabulary, and click the mouse 

on any item (such as -) to display its definition. 

C. Role of the Computer and of Notation 

Seeing the computer determine the derivatives of functions such as the square might well 
cause a student to forget the mathematics and concentrate instead on the wonder of how 
the computer does it. A student of astronomy might likewise be diverted by the wonders 
of optics and telescopes; they are respectable, but they are not astronomy. 

In  the  case  of  the  derivative  operator,  the  computer  simply  consults  a  given  table  of 
derivatives  and  an  associated  table  of  rules  (such  as  the  chain  rule).  The  details  of  the 
computer calculation of the square root of  3.14159 are much more challenging. 

The important point for a student of mathematics is to treat the computer as a tool, being 
clear about what it does, not necessarily how it does it. In particular, the tool should be 
used for convenient and accurate experimentation with mathematical ideas. 

The  study  of  notation  itself  can  be  fascinating,  but  the  student  of  calculus  should 
concentrate on the mathematical ideas it is being used to convey, and not spend too much 
time  on  byways  suggested  by  the  notation.  For  example,  a  chance  application  of  the 
simple factorial function to a fraction (! 0.5) or the square root to a negative number 
(%:-4)  might  lead  one  away  into  the  marvels  of  the  gamma  function  and  imaginary 
numbers. 

A student must, of course, learn some notation, such as the use of ^ for power (first used 
by  de  Morgan)  and  of  +  and  * for  plus and times. However, it is best not to spend too 
much conscious effort on memorizing vocabulary, but rather to rely on the fact that most 
words  will  be  used  frequently  enough  in  context  to  fix  them  in  mind.  Moreover,  the 
definition of a function may be displayed by simply entering its name without the usual 
accompanying argument, as illustrated in Exercise B10. 

D. Derivative, Integral, and Secant Slope 

The central notions of the calculus are the derivative and the integral or anti-derivative. 
Each is an adverb in the sense that it applies to a function (or verb) to produce a derived 
function.  Both  are  illustrated  (for  the  square  function  x2)  by  the  following  graph,  in 
which the slope of the tangent at the point x,x2 as a function of x is the derivative of the 
square function, that is 2x. The area under the graph is the integral of the square, that is, 
the function x3 /3, a function whose derivative is the square function. 

Certain important properties of a function are easily seen in its graph. For example, the 
square has a minimum at the point 0 0; increases to the right of zero at an accelerating 
rate; and the area under it can be estimated by summing the areas of the trapezoids:  

   PLOT x;*: x=:i:4 

 
 
Chapter 1  Introduction   15 

These properties concern the local behavior of a function in the sense that they concern 
how  rapidly  the  function  value  is  changing  at  any  point.  They  are  not  easily  discerned 
from the expression for the function itself, but are expressed directly by its derivative. 

More surprisingly, a host of important functions can be defined simply in terms of their 
derivatives.  For  example,  the  important  exponential  (or  growth)  function  is  completely 
defined by the fact that it is equal to its derivative (therefore growing at a rate equal to 
itself), and has the value 1 for the argument 0. 
The difference calculus (Chapter 4) is based upon secant slopes, such as illustrated by the 
lines  in  the  foregoing  plot  of  the  square  function.  The  slope  of  the  secant  (from  ligne 
secante, or cutting line) through the points x,f x and (x+r),(f x+r) is obtained by 
dividing  the  rise(f  x+r)-(f  x)  by  the  run  r;  the  result  of  ((f  x+r)-f  x)%r  is 
called the r-slope of f at the point x. 
The  difference  calculus  proves  useful  in  a  wide  variety  of  applications,  including 
approximations to arbitrary functions, and financial calculations in which events (such as 
payments) occur at fixed intervals. 

The function used to plot the square must be prepared as follows: 

   load 'graph plot' 

   PLOT=:'stick,line'&plot 

E. Sums and Multiples 

The derivative of the function p+q (the sum of the functions p and q) is the sum of their 
derivatives. This may be seen by plotting the functions together with their sum. We will 
illustrate this by the sine and cosine functions: 

   p=:1&o.       The sine function 

   q=:2&o.       The cosine function 

   x=:(i.11)%5 

   PLOT x;>(p x);(q x);((p x)+(q x)) 

 
 
 
 
 
 
 
 
 
 
16  Calculus 

Since each value of the sum function is the sum of the component functions, the slopes of 
its  secants  are  also  the  sum  of  the  corresponding  slopes.  Since  this  is  true  for  every 
secant, it is true for the derivative. 
Similarly, the slopes of a multiple of a function p are all the same multiple of the slopes 
of p, and its derivative is therefore the same multiple of the derivative of p. For example: 

   PLOT x;>(p x);(2 * p x) 

F. Derivatives of Powers 

The  derivative  of  the  square  function  f=:  ^&2  can  be  obtained  by  algebraically 
expanding  the  expression  f(x+r)  to  the  equivalent  form  (x^2)+(2*x*r)+(r^2),  as 
shown in the following proof, or list of identical expressions: 

   ((f x+r)-(f x)) % r 

   (((x+r)^2)-(x^2))%r 

   (((x^2)+(2*x*r)+(r^2)) - (x^2)) % r 

   ((2*x*r)+(r^2)) % r 

   (2*x)+r 

Moreover, if r is set to zero in the final expression (2*x)+r, the result is 2*x, the value 
of the derivative of ^&2. 

Similar analysis can be performed on other power functions. Thus if g=: ^&3 : 

   ((g x+r)-(g x)) % r 
   ((3*(x^2)*r)+(3*x*r^2)+(r^3)) % r 
   (3*x^2)+(3*x*r)+(r^2) 

Again the derivative is obtained by setting r to zero, leaving 3*x^2. 

 
 
 
 
Chapter 1  Introduction   17 

Similar analysis shows that the derivative of ^&4 is 4*^&3 and, in general, the derivative 
of  ^&n is  n*^&n. Since the first term of the expansion of  (x+r)^n is cancelled by the 
subtraction of x^n, and since all terms after the second include powers of r greater than 
1, the only term relevant to the derivative is the second, that is, n*x^n-1. 

G. Derivatives of Polynomials 

The  expression  (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3)  is  an  example  of  a 
polynomial.  We  may  also  express  it  as  8  _20  _3  2  p.  x,  using  the  polynomial 
function denoted by p. . The elements of the list 8 _20 _3 2 are called the coefficients 
of the polynomial. For example: 

   x=:2 

   (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3) 
_28 

   8 _20 _3 2 p. x 
_28 

   c=:8 _20 _3 2 
   x=:0 1 2 3 4 5 

   (8*x^0) + (_20*x^1) + (_3*x^2) + (2*x^3) 
8 _13 _28 _25 8 83 
   c p. x 
8 _13 _28 _25 8 83 

The expression (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3) is a sum whose derivative 
is therefore a sum of the derivatives of the individual terms. Each term is a multiple of a 
power,  so  each  of  these  derivatives  is  a  multiple  of  the  derivative  of  the  corresponding 
power. The derivative is therefore the sum: 

   (0*8)+(_20*1*x^0)+(_3*2*x^1)+(2*3*x^2) 

This  is  a  polynomial  with  coefficients  given  by  c*i.#c,  with  the  leading  element 
removed to reduce each of the powers by 1 : 

   c 
8 _20 _3 2 

   i.#c 
0 1 2 3 

   c*i.#c 
0 _20 _6 6 

   dc=:}.c*i.#c 

   dc 
_20 _6 6 

   dc p. x 
_20 _20 _8 16 52 100 
   x,.(c p. x),.(dc p. x) 
0   8 _20 
1 _13 _20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18  Calculus 

2 _28  _8 
3 _25  16 
4   8  52 
5  83 100 

   PLOT x;>(c p. x);(dc p. x)    

As remarked in Section A, " … the functions of interest in elementary calculus are easily 
approximated by polynomials … ". The following illustrates this for the sine function and 
its derivative (the cosine), using _1r6 for the rational fraction negative one-sixths: 

   csin=:0 1 0 _1r6 0 1r120 0 _1r5040   
   ccos=:}.csin*i.#csin 
   x=:(i:6)%2 
   PLOT x;>(csin p. x);(ccos p. x) 

H. Power Series 

We will call s a series function if s n produces a list of n elements. For example: 

   s1=:$&0 1   Press F1 for the vocabulary, and see the definition of $ 
   s2=:_1&^@s1    
   s1 5 
0 1 0 1 0 
   s2 8 
1 _1 1 _1 1 _1 1 _1 

A  polynomial  with  coefficients  produced  by  a  series  function  is  a  sum  of  powers 
weighted by the series, and is called a power series. For example: 

   x=:0.5*i.6 
   (s1 5) p. x    Sum of odd powers 
0 0.625 2 4.875 10 18.125 

 
 
 
 
 
 
 
 
 
Chapter 1  Introduction   19 

   (s2 8) p. x    Alternating sum of powers 
1 0.664063 0 _9.85156 _85 _435.68 

We  will  define  an  adverb  PS  such  that  n  (s  PS)  x  gives  the  n-term  power  series 
determined by the series function s: 

   PS=:1 : (':'; '(u. x.) p. y.')  See definition of : (Explicit definition) 

   5 s1 PS x 
0 0.625 2 4.875 10 18.125 

   8 s2 PS x 
1 0.664063 0 _9.85156 _85 _435.68 

   S1=:s1 PS 
   5 S1 x 
0 0.625 2 4.875 10 18.125 

Power series can be used to approximate the functions needed in elementary calculus. For 
example: 

   s3=:%@!@i.     Reciprocal of factorial of integers 
   s4=:$&0 1 0 _1 
   s5=:s3*s4    

   s3 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 

   s4 7 
0 1 0 _1 0 1 0 

   s5 7 
0 1 0 _0.166667 0 0.00833333 0 

   S3=:s3 PS 
   S4=:s4 PS 
   S5=:s5 PS 

   7 S3 x        Seven-term power series approximation to 
1 1.64872 2.71806 4.47754 7.35556 12.0097 

   ^x              the exponential function 
1 1.64872 2.71828 4.48169 7.38906 12.1825 

   10 S5 x       Ten-term power series approximation to  
0 0.479426 0.841471 0.997497 0.909347 0.599046 

   1&o. x          the sine function 
0 0.479426 0.841471 0.997495 0.909297 0.598472 

Since c=:s5 10 provides the coefficients of an approximation to the sine function, the 
expression }. c * i.10 provides (according to the preceding section) the coefficients 
of an approximation to its derivative (the cosine). Thus: 

   c=:s5 10 

 
 
 
 
 
 
    
    
 
 
 
 
 
 
 
  
 
    
 
 
 
    
20  Calculus 

   y1=:c p. y=:0.5*i:6 

   y2=:(}.c*i.10) p. y 

   PLOT y;>y1;y2 

I. Conclusion 

We  conclude  with  a  brief  statement  of  the  ways  in  which  the  present  treatment  of  the 
calculus  differs  from  most  introductory  treatments.  For  the  differential  calculus  of 
Chapter 2, the important difference is the avoidance of problems of limits by restricting 
attention to polynomials, and the use of power series to extend results to other functions. 

Moreover: 

1. 

In  Vector  Calculus  (Chapter  3),  Partial  derivatives  are  treated  in  a  simpler 
and more general way made possible by the use of functions that deal with 
arguments  and  results  of  arbitrary  rank;  this  in  contrast  to  the  restriction  to 
scalars (single elements) common in elementary treatments of the calculus. 

2.  The Calculus of Differences (Chapter 4) is developed as a topic of interest in 
its own right rather than as a brief way-station to integrals and derivatives. 

3.  Fractional  derivatives  (Chapter  5)  constitute  a  powerful  tool  that  is  seldom 
treated  in  calculus  courses.  They  are  an  extension  of  derivatives  of  integral 
order, introduced here in a manner analogous to the extension of the power 
function  to  fractional  exponents,  and  the  extension  of  the  factorial  and 
binomial coefficient functions to fractional arguments. 

4.  Few formal proofs are presented, and proofs are instead treated (as they are 
in Arithmetic [1]) in the spirit of Lakatos in his Proofs and Refutations [2], of 
which the author says:  

"Its  modest  aim  is  to  elaborate  the  point  that  informal,  quasi-empirical, 
mathematics does not grow through the monotonous increase of the number 
of  indubitably  established  theorems  but  through  the  incessant  improvement 
of  guesses  by  speculation  and  criticism,  by  the  logic  of  proofs  and 
refutations." 

5.  The notation used is unambiguous and executable. Because it is executable, it 
is used for experimentation; new notions are first introduced by leading the 
student  to  see  them  in  action,  and  to  gain  familiarity  with  their  use  before 
analysis is attempted. 

6.  As illustrated at the end of Section B, informal proofs will be presented by 
writing  a  sequence  of  expressions  to  imply  that  each  is  equivalent  to  its 
predecessor, and that the last is therefore equivalent to the first. 

 
    
    
 
Chapter 1  Introduction   21 

7.  The  exercises  are  an  integral  part  of  the  development,  and  should  be 
attempted  as  early  as  possible,  perhaps  even  before  reading  the  relevant 
sections.  Try  to  provide  (or  at  least  sketch  out)  answers  without  using  the 
computer, and then use it to confirm your results. 

8.   Two significant parts may be distinguished in treatments of the calculus: 

a)  A  body  comprising  the  central  notions  of  derivative  and  anti-derivative 

(integral), together with their important consequences. 

b)  A basis comprising the analysis of the notion of limit (that arises in the 
transition  from  the  secant  slope  to  the  tangent  slope)  needed  as  a 
foundation for an axiomatic deductive treatment. 

The  common  approach  is  to  treat  the  basis  first,  and  the  body  second.  For 
example, in Johnson and Kiokemeister Calculus with analytic geometry [6], 
the  section  on  The  derivative  of  a  function  occurs  after  eighty  pages  of 
preliminaries.  

The  present  text  defers  discussion  of  the  analytical  basis  to  Chapter  8,  first 
providing the reader with experience with the derivative and the importance of its 
fruits, so that she may better appreciate the point of the analysis. 

 
 
 
  23 

Chapter 
2 

Differential Calculus 

A. Introduction 

In Chapter 1 it was remarked that: 
β€’  The  power  of  the  calculus  rests  upon  the  study  of  functions  together  with  their 

derivatives, or rates-of-change. 

β€’  The difficult notion of limits encountered in determining derivatives can be deferred 

by restricting attention to functions expressible as polynomials. 

β€’  The results for polynomials can be extended to other functions by the use of power 

series. 

β€’  The  derivative  of 
d=:}.c*i.#c. 

the  polynomial  c&p. 

is 

the  polynomial  d&p.,  where 

We  begin  by  defining  a  function  deco  for  the  derivative  coefficients,  and  applying  it 
repeatedly to a list of coefficients that represent the cube (third power): 

   deco=:}.@(] * i.@#) 

   c=:0 0 0 1 
   x=:0 1 2 3 4 5 6 
   c p. x 
0 1 8 27 64 125 216 
   x^3 
0 1 8 27 64 125 216 

   ]cd=:deco c       Coefficients of first derivative of cube 
0 0 3 
   cd p. x 
0 3 12 27 48 75 108 
   3*x^2 
0 3 12 27 48 75 108 
   #cd               Number of elements  
3 

   ]cdd=:deco cd     Coefficients of second derivative of cube 
0 6 
   cdd p. x 
0 6 12 18 24 30 36 
   2*3*x^1 
0 6 12 18 24 30 36 

 
 
 
 
 
 
 
24  Calculus 

   #cdd              Number of elements  
2 

   ]cddd=:deco cdd   Coefficients of third derivative of cube 
6 
   cddd p. x         A constant function 
6 6 6 6 6 6 6 
   1*2*3*x^0 
6 6 6 6 6 6 6 
   #cddd             Number of elements 
1 

   ]cdddd=:deco cddd Coefficients of fourth derivative of cube (empty list) 

   cdddd p. x        Sum of an empty list (a zero constant function) 
0 0 0 0 0 0 0 
   #cdddd            Number of elements 
0 

B. The derivative operator 

If  f=:c&p.  is  a  polynomial  function,  then  g=:(deco  c)&p.  is  its  derivative.  For 
example: 

   c=:3 1 _4 _2  
   f=:c&p. 
   g=:(deco c)&p. 
   ]x=:i:3 
_3 _2 _1 0 1 2 3 

   f x 
18 1 0 3 _2 _27 _84 
   g x 
_29 _7 3 1 _13 _39 _77 

   PLOT x;>(f x);(g x) 

Since  deco  provides  the  computations  for  obtaining  the  derivative  of  f  in  terms  of  its 
defining  coefficients,  it  can  also  provide  the  basis  for  a  derivative  operator  that  applies 
directly to the function f. For example: 

   f d. 1 x 
_29 _7 3 1 _13 _39 _77 

In the expression f d. 1, the right argument determines the order of the derivative, in 
this case giving the first derivative. Successive derivatives can be obtained as follows: 

 
 
 
 
 
 
 
 
 
    
Chapter 2  Differential Calculus  25 

   f d. 2 x 
28 16 4 _8 _20 _32 _44 

   (deco deco c) p. x 
28 16 4 _8 _20 _32 _44 

   f d. 3 x 
_12 _12 _12 _12 _12 _12 _12 
   (deco deco deco c) p. x 
_12 _12 _12 _12 _12 _12 _12  

C. Functions Defined by Equations (Relations) 

A  function  may  be  defined  directly,  as  in  f=:^&3  or  g=:0  0  0  1&p.  It  may  also  be 
defined  indirectly  by  an  equation  that  specifies  some  relation  that  it  must  satisfy.  For 
example:  

1.   invcube is the inverse of the cube. 

  A  function  that  satisfies  this  equation  may  be  expressed  directly  in  various 

ways. For example: 

   cube=:^&3 
    cube x=: 1 2 3 4 5 
  1 8 27 64 125 

   invcube=: ^&(%3) 

   invcube cube x 
1 2 3 4 5 

   cube invcube x 
1 2 3 4 5 

   altinvcube=: cube ^:_1          Inverse operator 
   altinvcube cube x 
1 2 3 4 5 

2.   reccube is the reciprocal of the cube. 

   reccube=: %@cube  
   reccube x 
1 0.125 0.037037 0.015625 0.008 
   (reccube * cube) x 
1 1 1 1 1 

3.  The derivative of s is the cube. 

   s=:0 0 0 0 0.25&p. 
   s x 
0.25 4 20.25 64 156.25 
   s d.1 x 
1 8 27 64 125 

 
 
 
 
 
    
    
    
     
 
 
 
 
26  Calculus 

A  stated  relation  may  not  specify  a  function  completely.  For  example,  the  equation  for 
Example 3 is also satisfied by the alternative function as=: 8"0+s. Thus: 

   as=:8"0 + s 

   as x 
8.25 12 28.25 72 164.25 
   as d.1 x 
1 8 27 64 125 

Further  conditions  may  therefore  be  stipulated  to  define  the  function  completely.  For 
example, if it is further required that s 2 must be 7, then s is completely defined. Thus: 

   as=:3"0 + s 
   as 2 
7 
   as d.1 x 
1 8 27 64 125 

C1  Experiment with the expressions of this section. 

D. Differential Equations 

An equation that involves derivatives of the function being defined is called a differential 
equation. The remainder of this chapter will use simple differential equations to define an 
important collection of functions, including the exponential, hyperbolic, and circular (or 
trigonometric). 

We will approach the solution of differential equations through the use of polynomials. 
Because  a  polynomial  includes  one  more  term  than  its  derivative,  it  can  never  exactly 
equal  the  derivative,  and  we  consider  functions  that  approximate  the  desired  solution. 
However, for the cases considered, successive coefficients decrease rapidly in magnitude, 
and approximation can be made as close as desired. Consideration of the convergence of 
such approximations is deferred to Chapter 8. 

E. Growth F d.1 = F 

If the derivative of a function is equal to (or proportional to) the function itself, it is said 
to  grow  exponentially.  Examples  of  exponential  growth  include  continuous  compound 
interest, and the growth of a well-fed colony of bacteria. 

If f is the polynomial c&p., then the derivative of f is the polynomial with coefficients 
deco c. Thus: 

   ]c=:1,(%1),(%1*2),(%1*2*3),(%!4),(%!5),(%!6) 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
   c*i.#c 
0 1 1 0.5 0.166667 0.0416667 0.00833333 
   }. c*i.#c 
1 1 0.5 0.166667 0.0416667 0.00833333 
   deco c 
1 1 0.5 0.166667 0.0416667 0.00833333 

In  this  case  the  coefficients  of  the  derivative  polynomial  agree  with  the  original 
coefficients  except  for  the  missing  final  element.  The  same  is  true  for  any  coefficients 
produced by the following exponential coefficients function: 

 
 
 
 
Chapter 2  Differential Calculus  27 

   ec=: %@! 

   ]c=: ec i. n=: 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
   deco c 
1 1 0.5 0.166667 0.0416667 0.00833333 

Consequently, the function c&p. is approximately equal to its derivative. For example: 

   c&p. x=: 0 1 2 3  
1 2.71806 7.35556 19.4125  

   (deco c)&p. x 
1 2.71667 7.26667 18.4  

The primitive exponential function, denoted by ^, is defined as the limiting case for large 
n.  For example: 

   c=: ec i. n=: 12 
   c&p. x 
1 2.71828 7.38905 20.0841 
   ^x 
1 2.71828 7.38906 20.0855 

The  related  function  ^@(r&*)  grows  at  a  rate  proportional    to  the  function,  the  ratio 
being r. For example: 

   r=:0.1 
   q=: ^@(r&*) 

   q d.1 x 
0.1 0.110517 0.12214 0.134986  
   r * q x 
0.1 0.110517 0.12214 0.134986  

F. Decay F d.1 = -@F 

A  function  whose  derivative  is  equal  to  or  proportional  to  its  negation  is  decaying  at  a 
rate proportional to itself. Interpretations include the charge of water remaining in a can 
punctured  at  the  bottom,  and  the  electrical  charge  remaining  in  a  capacitor  draining 
through a resistor; the rate of flow (and therefore of loss) is proportional to the pressure 
provided by the remaining charge at any time. 

The  coefficients  of  a  polynomial  defining  such  a  function  must  be  similar  to  that  for 
growth, except that the elements must alternate in sign. Thus: 

   eca=: _1&^ * ec 
   eca i.7 
1 _1 0.5 _0.166667 0.0416667 _0.00833333 0.00138889 

   deco eca 7 
_1 1 _0.5 0.166667 _0.0416667 0.00833333 

 
 
 
 
 
 
 
 
 
 
 
 
28  Calculus 

   (eca 20)&p. x 
1 0.367879 0.135335 0.0497871 0.0183153 

   (deco eca 20)&p x 
_1 _0.367879 _0.135335 _0.0497871 _0.0183175 

The relation between the growth and decay functions will be explored in exercises and in 
Chapter 6. 

F1  Define  a  function  pp  such  that  (a  pp  b)&p.  is  equivalent  to  the  product 

(a&p.*b&p.) ; test it for  a=:1 2 1 [ b=:1 3 3 1. 

[  pp=: +//.@(*/)  ] 

F2 

Predict the value of a few elements of (ec pp eca) i.7 and enter the expression 
to validate your prediction. 

F3  Enter x=:0.1*i:30 and y1=:^ x and y2=:^@-x. Then enter PLOT x;>y1;y2. 

F4 

Predict and confirm the result of the product y1*y2. 

G. Hyperbolic Functions F d.2 = F 

The  second  derivative  of  a  function  may  be  construed  as  its  acceleration,  and  many 
phenomena are described by functions defined in terms of their acceleration. 

We will again use polynomials to approximate functions, first a function that is equal to 
its  second  derivative.  Since  the  second  derivative  of  the  exponential  ^  is  also  equal  to 
itself,  the  coefficients  ec  i.n  would  suffice.  However,  we  seek  new  functions  and 
therefore add the restriction that f d.1 must not equal f. 

Coefficients  satisfying  these  requirements  can  be  obtained  by  suppressing  (that  is, 
replacing by zeros) alternate elements of ec i.n. Thus: 

   2|i.n=: 9 
0 1 0 1 0 1 0 1 0 

   hsc=: 2&| * ec 
   ]c=: hsc i.n 
0 1 0 0.166667 0 0.00833333 0 0.000198413 0 

   deco c 
1 0 0.5 0 0.0416667 0 0.00138889 0 

   deco deco c 
0 1 0 0.166667 0 0.00833333 0 

The result of deco c was shown above to make clear that the first derivative differs from 
the  function.  However,  it  should  also  be  apparent  that  it  qualifies  as  a  second  function 
that equals its second derivative. We therefore define a corresponding function hcc : 

   hcc=: 0&=@(2&|) * ec 
   hcc i.n 
1 0 0.5 0 0.0416667 0 0.00138889 0 2.48016e_5 

 
 
 
 
 
 
 
 
 
Chapter 2  Differential Calculus  29 

   deco deco hcc i.n 
1 0 0.5 0 0.0416667 0 0.00138889 

The limiting values of the corresponding polynomials are called the hyperbolic sine and 
hyperbolic  cosine,  respectively.  They  are  the  functions  defined  by  hsin=:  5&o.  and 
hcos=: 6&o.. Thus: 
   hsin=:5&o. 
   hcos=:6&o. 

   (hsc i.20)&p. x=: 0 1 2 3 4 
0 1.1752 3.62686 10.0179 27.2899 

   hsin x 
0 1.1752 3.62686 10.0179 27.2899 

   (hcc i.20)&p. x 
1 1.54308 3.7622 10.0677 27.3082 

   hcos x 
1 1.54308 3.7622 10.0677 27.3082 

It should also be noted that each of the hyperbolic functions is the derivative of the other. 
Further properties of these functions will be explored in Chapter 6. In particular, it will be 
seen  that  a  plot  of  one  against  the  other  yields  a  hyperbola.  The  more  pronounceable 
abbreviations cosh and sinh (pronounced cinch) are also used for these functions. 

G1  Enter  x=:0.1*i:30  and  y1=:hsin  x  and  y2=:hcos  x.  Then  plot  the  two 
functions by entering PLOT x;>y1;y2. 
G2  Enter PLOT y1;y2 to plot cosh against sinh, and comment on the shape of the plot. 
G3  Predict the result of (y2*y2)-(y1*y1) and test it on the computer. 

H. Circular Functions F d.2 = -@F 

It  may  be  noted  that  the  hyperbolics,  like  the  exponential,  continue  to  grow  with 
increasing  arguments.  This  is  not  surprising,  since  their  acceleration  increases  with  the 
increase of the function. 

We  now  consider  functions  whose  acceleration  is  opposite  in  sign  to  the  functions 
themselves,  a  characteristic  that  leads  to  periodic    functions,  whose  values  repeat  as 
arguments grow. These functions are useful in describing periodic phenomena such as the 
oscillations in a mechanical system (the motion of a weight suspended on a spring) or in 
an electrical system (a coil connected to a capacitor).  

Appropriate  polynomial  coefficients  are  easily  obtained  by  alternating  the  signs  of  the 
non-zero elements resulting from hsc and hcc. Thus: 

   sc=: _1&^@(3&=)@(4&|) * hsc 
   cc=: _1&^@(2&=)@(4&|) * hcc 
   sc i.n 
0 1 0 _0.166667 0 0.00833333 0 _0.000198413 0 
   cc i.n 

 
 
 
 
 
 
 
 
 
 
30  Calculus 

1 0 _0.5 0 0.0416667 0 _0.00138889 0 2.48016e_5 

   (sc i.20)&p. x 
0 0.841471 0.909297 0.14112 _0.756803 
   sin=:1&o. 
   cos=:2&o. 

   sin x 
0 0.841471 0.909297 0.14112 _0.756802  

   (cc i.20)&p. x 
1 0.540302 _0.416147 _0.989992 _0.653644 

   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 

It  may  be  surprising  that  these  functions  defined  only  in  terms  of  their  derivatives  are 
precisely the sine and cosine functions of trigonometry (expressed in terms of arguments 
in radians rather than degrees); these relations are examined in Section 6F. 

H1   Repeat Exercises G1-G3 with modifications appropriate to the circular functions. 

Use  the  "power  series”  operator  PS  and  other  ideas  from  Section  1G  in 

H2 
experiments on the hyperbolic and circular functions. 

I. Scaling 

The function ^@(r&*) used in Section B is an example of scaling; its argument is first 
multiplied  by  the  scale  factor  r  before  applying  the  main  function  ^.  Such  scaling  is 
generally  useful,  and  we  define  a  more  convenient  conjunction  for  the  purpose  as 
follows: 

   AM=: 2 : 'x. @ (y.&*)' 

Atop Multiplication 

For example: 

   ^&(0.1&*) x=: 0 1 2 3 4 
1 1.10517 1.2214 1.34986 1.49182 

   ^ AM 0.1 x 
1 1.10517 1.2214 1.34986 1.49182 

Thus,  f AM r may be read as "f atop multiplication (by) r". Also: 

   ^ AM 0.1 d.1 x 
0.1 0.110517 0.12214 0.134986 0.149182 
   0.1 * ^ AM 0.1 x 
0.1 0.110517 0.12214 0.134986 0.149182 

 
 
 
 
 
 
 
 
 
 
 
Chapter 2  Differential Calculus  31 

J. Argument Transformations 

Scaling  is  only  one  of  many  useful  argument  transformations;  we  define  two  further 
conjunctions, atop addition and atop polynomial: 

   AA=: 2 : 'x. @ (y.&+)' 
   AP=: 2 : 'x. @ (y.&p.)' 

In  Section  H  it  was  remarked  that  the  circular  functions  sin  and  cos  "repeat"  their 
values after a certain period. Thus: 

   per=: 6.28 
   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 

   cos AA per x 
0.999995 0.54298 _0.413248 _0.989538 _0.656051 

Experimentation  with  different  values  of  per  can  be  used  to  determine  a  better 
approximation to the true period of the cosine. 

The conjunction AP provides a more general transformation. Thus: 

   f AA 3 AM 4   is   f AP 3 4 

   f AM 3 AA 4   is   f AP 12 3 

A function FfC to yield Fahrenheit from Celsius can be used to further illustrate the use 
of argument transformation: 

   FfC=: 32"0 + 1.8"0 * ]  Uses Constant functions (See Section 1B) 

   fahr=: _40 0 100 
   FfC fahr 
_40 32 212 

   ] AA 32 AM 1.8 fahr         
_40 32 212   

   ] AP 32 1.8 fahr 
_40 32 212 

The following derivatives are easily obtained by substitution and the use of the table of 
Section K: 

Function 

f AA r 

f AM r 

f AP c 

Derivative 

f D AA r 

(f D AM r * r"0)       

(f D AP c * (d c)&p.) 

K.  Table of Derivatives 

The following table lists a number of important functions, together with their derivatives. 
Each  function  is  accompanied  by  a  phrase  (such  as  Identity)  and  an  index  that  will  be 
used to refer to it, as in Theorem 2 or ΞΈ2 (where ΞΈ is the Greek letter theta) . 

 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
32  Calculus 

 ΞΈ   NAME 

  FUNCTION 

  DERIVATIVE 

 1   Constant function 

 2  

Identity 

a"0 

] 

 3   Constant Times 

a"0 * ] 

0"0 

1"0 

a"0 

 4   Sum 

 5   Difference 

 6   Product 

 7  Quotient 

f+g 

f-g 

f*g 

(f d.1)+(g d.1) 

(f d.1)-(g d.1) 

(f*(g d.1))+((f d.1)*g) 

f%g    

(f%g)*((f d.1)%f)-((g d.1)%g) 

 8  Composition 

f@g 

(f d.1)@g * (g d.1) 

 9 

Inverse 

 10  Reciprocal 

 11  Power 

 12  Polynomial 

Legend: 

f INV 

%@(f d.1 @(f INV))  

%@f 

^&n 

c&p. 

-@(f d.1 % (f*f)) 

n&p. * ^&(n-1) 

(deco c)&p.  

Functions f and g and constants a and n, and list constant c 
Polynomial derivative deco=:}.@(] * i.@#) 
Inverse adverb INV=:^:_1 

Although  more  thorough  analysis  will  be  deferred  to  Chapter  8,  we  will  here  present 
arguments for the plausibility of the theorems: 

ΞΈ 1 

ΞΈ 2 

Since a"0 x is a for any x, the rise is the zero function 0"0. 

Since (]a+x)-(]x) is (a+x)-x, the rise is a, and the slope is a%a  

ΞΈ 3  Multiplying a function by a multiplies all of its rises, and hence its slopes, by a 

as well. 

ΞΈ 4,5  The rise of f+g (or f-g) is the sum (or difference) of the rises of f and g. Also 

see the discussion in Section 1D. 

ΞΈ 6 

If the result of f is fixed while the result of g changes, the  result  of  f*g  changes 
by  f times the change in  g; conversely if  f changes while  g is fixed. The total 
change in f*g is the sum of these changes. 

ΞΈ 7 

If h=: f%g, then g*h is f, and, using ΞΈ 6 : 

f d.1 

(g*h) d.1 

(g*(h d.1))+((g d.1)*h) 

The equation (f d.1)=(g*(h d.1))+((g d.1)*h) can be solved for h d.1, 
giving the result of ΞΈ 7. 

ΞΈ 8 

The  derivative  of  f@g  is  the  derivative  of  f  "applied  at  the  point  g"  (that  is,  (f 
d.1)@g),  multiplied  by  the  rate  of  change  of  the  function  that  is  applied  first 
(that is, g d.1)   

 
 
 
 
 
Chapter 2  Differential Calculus  33 

ΞΈ 9 

f@(f INV) d.1 is the product (f d.1)@(f INV) * ((f INV) d.1) (from 
ΞΈ 6). But since f@(f INV) is the identity function, its derivative is 1&p. and the 
second factor (f INV) d.1 is therefore the reciprocal of the first. 

ΞΈ 10 

This can be obtained from ΞΈ 7 using the case f=: ] . 

ΞΈ 11   Since ^&5 is equivalent to the product function ] * ^&4, its derivative may be 
obtained from ΞΈ 6 and the result for the derivative of ^&4. Further cases may be 
obtained similarly; that is, by induction. 

ΞΈ 12 

This follows from ΞΈ 3 and ΞΈ 11. 

K1 

K2 

Enter f=: ^&2 and f=: ^&3 and x=: 1 2 3 4 ; then test the equivalence of 
the  functions  in  the  discussion  of  Theorem  7  by  entering  each  followed  by  x, 
being sure to parenthesize the entire sentence if need be. 
If  a  is  a  noun  (such  as  2.7),  then  a"0  is  a  constant  function.  Prove  that 
((a"0  +  f)  d.1  =  f  d.1)  is  a  tautology,  that  is,  gives  1  (true)  for  every 
argument. 

L. Use of Theorems 

The  product  of  the  identity  function  (])  with  itself  is  the  square  (^&2  or  *:),  and  the 
expression  for  the  derivative  of  a  product  can  therefore  be  used  as  an  alternative 
determination of the derivative of the square and of higher powers: 

(] * ]) d.1 

(] * (] d.1)) + ((] d.1) * ])  Theorem 6 

(] * 1"0) + (1"0 * ])          Theorem 2 

] + ] 

2"0 * ]                        Twice the argument 

Further powers may be expressed as products with the identity function. Thus: 

   f4=:]*f3=:]*f2=:]*f1=:]*f0=:1"0 

   x=:0 1 2 3 4 

   >(f0;f1;f2;f3;f4) x 
1 1  1  1   1 
0 1  2  3   4 
0 1  4  9  16 
0 1  8 27  64 
0 1 16 81 256 

Their derivatives can be analyzed in the manner used for the square: 

f3 d.1  

(]*f2) d.1 

(((] d.1)*f2)+(]*(f2 d.1))) 

((1"0 * f2)+(]*2"0 * ])) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34  Calculus 

(f2+2"0 * f2) 

(3"0 * f2) 

M. Anti-Derivative 

The  anti-derivative  is  an  operator  defined  by  a  relation:  applied  to  a  function  f,  it 
produces  a  function  whose  derivative  is  f.  Simple  algebra  can  be  applied  to  produce  a 
function adeco that is inverse to deco.  

Since  deco  multiplies  by  indices  and  then  drops  the  leading  element,  the  inverse  must 
divide by one plus the indices, and then append an arbitrary leading element. We will try 
two  different  leading  elements,  and  then  define  adeco  as  a  dyadic  function  whose  left 
argument specifies the arbitrary element (known as the constant of integration): 

   f1=: 5"1 , ] % >:@i.@#@]  Constant of integration is 5 

   c=:3 1 4 2 

   f1 c 
5 3 0.5 1.33333 0.5 
   deco f1 c 
3 1 4 2 

   f2=: 24"1 , ] % >:@i.@#@]  Constant of integration is 24 
   f2 c 
24 3 0.5 1.33333 0.5 
   deco f2 c 
3 1 4 2 

   adeco=: [ , ] % >:@i.@#@]  Constant specified by left argument 
   4 adeco c 
4 3 0.5 1.33333 0.5 
   deco 4 adeco c 
3 1 4 2 

   zadeco=:0&adeco            Monadic for common case of zero          
   zadeco c 
0 3 0.5 1.33333 0.5 
   deco zadeco c 
3 1 4 2  

Just as deco provides a basis for the derivative operator d., so does adeco provide the 
basis for extending d. to the anti-derivative, using negative arguments. For example: 

   x=:i.6 
   f=:c&p. 
   f x 
3 10 37 96 199 358 

   f d._1 x 
0 5.33333 26.6667 90 233.333 506.667 
   (0 adeco c) p. x 
0 5.33333 26.6667 90 233.333 506.667 

 
 
 
 
 
 
 
    
    
    
 
 
 
Chapter 2  Differential Calculus  35 

N. Integral 

The area under (bounded  by) the graph of a function has many important interpretations 
and uses. For example, if circle=: %: @ (1"0 - *:), then circle x gives the y 
coordinate of a point on a circle   with radius 1. The first quadrant may then be plotted as 
follows: 

   circle=: %: @ (1"0 - *:)  Square root of 1 minus the square 

   x=:0.1*i.11 
   y=:circle x 
   x,.y 
  0        1 
0.1 0.994987 
0.2 0.979796 
0.3 0.953939 
0.4 0.916515 
0.5 0.866025 
0.6      0.8 
0.7 0.714143 
0.8      0.6 
0.9  0.43589 
  1        0 

   PLOT x;y 

The  approximate  area  of  the  quadrant  is  given  by  the  sum  of  the  ten  trapezoids,  and 
(using r=:0.1) its change from x to x+r is r times the average height of the trapezoid, 
that  is,  the  average  of  circle  x,  and  circle  x+r.  Therefore,  its  rate-of  change 
(derivative)  at    any  argument  value  x  is  approximately  the  corresponding  value  of  the 
circle function. 

As  the  increment  r  approaches  zero,  the  rate  of  change  approaches  the  exact  function 
value, as illustrated below for the value r=:0.01: 

   x=:0.01*i.101 

 
 
 
    
 
 
 
 
36  Calculus 

   PLOT x;circle x 

In other words, the area under the curve is given by the anti-derivative. 

 
 
 
 
 
 
 
 
 
37 

Chapter 
3 

Vector Calculus  

A. Introduction 

Applied  to  a  list  of  three  dimensions  (length,  width,  height)  of  a  box,  the  function 
vol=:*/ gives its volume. For example: 

   lwh=:4 3 2 
   vol=:*/ 
   vol lwh 
24 

Since vol is a function of a vector, or list (rank-1 array), the rank-0 derivative operator 
d. used in the differential calculus in Chapter 1 does not apply to it. But the derivative 
operator D. does apply, as illustrated below: 

   vol D.1 lwh 
6 8 12 

The  last  element of this result is the rate of change as the last element of the argument 
(height) changes or, as we say, the derivative with respect to the last element of the vector 
argument.  Geometrically,  this  rate  of  change  is  the  area  given  by  the  other  two 
dimensions, that is, the length and width (whose product 12 is the area of the base). 

Similarly, the other two elements of the result are the derivatives with respect to each of 
the further elements; for example, the second is the product of the length and height. The 
entire result is called the gradient of the function vol.    

The  function  vol  produces  a  rank-0  (called  scalar,  or  atomic)  result  from  a  rank-1 
(vector)  argument,  and  is  therefore  said  to  have  form  0  1  or  to  be  a  0  1  function;  its 
derivative produces a rank-1 result from a rank-1 argument, and has form 1 1. 

The  product  over  the  first  two  elements  of  lwh  gives  the  "volume  in  two  dimensions" 
(that is, the area of the base), and the product over the first element alone is the "volume 
in one dimension". All are given by the function VOLS as follows: 

   VOLS=:vol\ 
   VOLS lwh 
4 12 24 

The function VOLS has form 1 1, and its derivative has form 2 1. For example: 

 
 
 
 
 
 
 
 
 
38  Calculus 

   VOLS D.1 lwh 
1 0  0 
3 4  0 
6 8 12 

This  table  merits  attention.  The  last  row  is  the  gradient  of  the  product  over  the  entire 
argument, and therefore agrees with gradient of vol shown earlier. The second row is the 
gradient of the product over the first two elements (the base); its value does not depend at 
all on the height, and the derivative with respect to the height is therefore zero (as shown 
by the last element). 

Strictly  speaking,  vector  calculus  concerns  only  functions  of  the  forms  0  1  and  1  1; 
other forms tend to be referred to as tensor analysis. Since the analysis remains the same 
for  other  forms,  we  will  not  restrict  attention  to  the  forms  0  1  and  1  1.  However,  we 
will normally restrict attention to three-space (as in vol 2 3 4 for the volume of a box) 
or two-space (as in vol 3 4 for the area of a rectangle), although an arbitrary number of 
elements may be treated. 

Because the result of a 1 1 function is a suitable argument for another of the same form, 
a sequence of them can be applied. We therefore reserve the term vector function for 1 1 
functions,  even  though  0  1  and  2  1  functions  are  also  vector  functions  in  a  more 
permissive sense. 

We adopt the convention that a name ending in the digits r and a denotes an r,a func-
tion. For example,  F01 is a scalar function of a vector, ABC11 is a vector function of a 
vector, and  G02 is a scalar function of a matrix (such as the determinant  det=:  -/  . 
*). The functions vol and VOLS might therefore be renamed vol01 and VOLS11. 

Although the function vol was completely defined by the expression vol=:*/ our initial 
comments added the physical interpretation of the volume of a box of dimensions lwh. 
Such  an  interpretation  can  be  exceedingly helpful  in  understanding  the  function  and  its 
rate of change, but it can also be harmful: to anyone familiar with finance and fearful of 
geometry, it might be better to use the interpretation cost=:*/ applied to the argument 
cip (c crates of i items each, at the price p).  

We will mainly allow the student to provide her own interpretation from some familiar 
topic,  but  will  devote  a  separate  Chapter  (7)  to  the  matter  of  interpretations.  Chapter  7 
may well be consulted at any point. 

B. Gradient 

As  illustrated  above  for  the  vector  function  VOLS,  its  first  derivative  produces  a  matrix 
result called the complete derivative or gradient. We will now use the conjunction D. to 
define an adverb GRAD for this purpose: 

   GRAD=:D.1 
   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 
We will illustrate its application to a number of functions:  
   E01=: +/@:*:           Sum of squares 
   F01=: %:@E01           Square root of sum of squares 
   G01=: 4p1"1 * *:@F01   Four pi times square of F01 

 
 
 
 
 
Chapter 3  Vector Calculus  39 

   H01=: %@G01 
   p=: 1 2 3 

   (E01,F01,G01,H01) p 
14 3.74166 175.929 0.00568411 

   E01 GRAD p 
2 4 6 
   F01 GRAD p 
0.267261 0.534522 0.801784 

   G01 GRAD p 
25.1327 50.2655 75.3982 

   H01 GRAD p 
_0.000812015 _0.00162403 _0.00243604 

B1  Develop interpretations for each of the functions defined above. 

ANSWERS: 

E01 p is the square of the distance (from the origin) to a point p. 

F01  p is the distance to a point  p, or the radius of the sphere (with centre at the 
origin) through the point p. 

G01 p is the surface area of the sphere through the point p. 

H01 is the intensity of illumination at point p provided by a unit light source at the 
origin. 

B2  Without using GRAD, provide definitions of functions equivalent to the derivatives of 

each of the functions defined above. 

ANSWERS:    
E11=: +:"1 
F11=: -:@%@%:@E01 * E11   
G11=: 4p1"0 * E11 
H11=: -@%@*:@G01 * G11    

Three  important  results  (called  the  Jacobian,  Divergence,  and  Laplacian)  are  obtained 
from  the  gradient  by  applying  two  elementary  matrix  functions.  They  are  the 
determinant,  familiar  from  high-school  algebra,  and  the  simpler  but  less  familiar  trace, 
defined as the sum of the diagonal. Thus: 

   det=:+/ . * 
   trace=:+/@((<0 1)&|:) 

   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 

   det VOLS GRAD lwh 
48 

   trace VOLS GRAD lwh 
17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
40  Calculus 

We will also have occasion to use the corresponding adverbs det@ and trace@. Thus: 

   DET=:det@ 
   VOLS GRAD DET lwh 
48 

   TRACE=:trace@ 
   VOLS GRAD TRACE lwh 
17 

C.  Jacobian 

The Jacobian is defined as the determinant of the gradient. Thus: 

   JAC=: GRAD DET 

   VOLS lwh 
4 12 24 

   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 

   VOLS JAC lwh 
48 
The  Jacobian  may  be  interpreted  as  the  volume  derivative,  or  rate  of  change of volume 
produced  by  application  of  a  function.  This  interpretation  is  most  easily  appreciated  in 
the  case  of  a  linear  function.  We  will begin with a linear function in 2-space, in which 
case the "volume" of a body is actually the area:  
   mp=: +/ . *        Matrix Product 
   ]m=: 2 2$2 0 0 3 
2 0 
0 3 

   L11=: mp&m"1 
   ]fig1=:>1 1;1 0;0 0;0 1 
1 1 
1 0 
0 0 
0 1 

   ]fig2=: L11 fig1 
2 3 
2 0 
0 0 
0 3 

   L11 JAC 1 1 
6 
   L11 JAC 1 0 
6 

   L11 JAC fig1 
6 6 6 6 

 
 
 
    
 
  
 
 
 
 
 
 
 
The result of the Jacobian is indeed the ratio of the areas of fig1 and fig2, as may be 
verified by plotting the two figures by hand. Moreover, for a linear function, the value of 
the Jacobian is the same at every point. 

Chapter 3  Vector Calculus  41 

C1  Provide an interpretation for the function K11.=:(H11*])"1. 

[  The  result  of  K11  is  the  direction  and  magnitude  of  the  repulsion  of  a  negative 
electrical charge from a positive charge at the origin. The function -@K11 may be 
interpreted as gravitational attraction. ] 

C2  What  is  the  relation  between  the  Jacobian  of  the  linear  function  L11  and  the 

determinant of the matrix m used in its definition? 

C3  What is the relation between the Jacobians of two linear functions LA11 and LB11 

and the Jacobian of  LC11=: LA11@LB11 (their composition). 

[ TEST=:LA11@LB11 JAC |@- LA11 JAC * LB11 JAC ] 

C4  Define functions LA11 and LB11, and test the comparison expressed in the solution 

to Exercise C3 by applying TEST to appropriate arguments.  

C5  The  Jacobian  of  the  linear  LR11=:  mp&(>0  1;1  0)"1    is  _1.  State  the 

significance of a negative Jacobian. 

[     Plot figures fig1 and fig2, and note that one can be moved smoothly onto the 
other "without crossing lines". Verify that this cannot be done with fig1 and LR11 
fig1;  it  is  necessary  to  "lift  the  figure  out  of  the  plane  and  flip  it  over".  A 
transformation whose Jacobian is negative is said to involve a "reflection".     ] 

C6  Enter, experiment with, and comment upon the following functions: 

    RM2=: 2 2&$@(1 1 _1 1&*)@(2 1 1 2&o.)"0 

     R2=: (] mp RM2@[)"0 1 

[ R2 is a linear function that produces a rotation in 2-space; the expression a R2 
fig rotates a figure (such as fig1 or fig2) about the origin through an angle of a 
radians in a counter-clockwise sense, without deforming the figure.] 

C7 

 What is the value of the Jacobian of a rotation a&R2"1? 

C8  Enter an expression to define FIG1 as an 8 by 3 table representing a cube, making 
sure that successive coordinates are adjacent, for example, 0 1 1 must not succeed 
1  1  0.  Define  3-space  linear  functions  to  apply  to  FIG1,  and  use  them  together 
with K11 to repeat Exercises 1-5 in 3-space. 

C9  Enter, experiment with, and comment upon the functions 

RM3=: 1 0 0&,@(0&,.)@RM2 

R30=: (] mp RM3@[)"0 1 

[ a&R30"1 produces a rotation through an angle a  in the plane of the last two axes 
in 3-space (or about axis 0). Test the value of the Jacobian.]  

C10  Define functions R31 and R32 that rotate about the other axes, and experiment with 

functions such as a1&R31@(a2&R30)"1. 

[Experiment  with  the  permutations  p=:  2&A.  and  p=:  5&A.  in  the  expression  
p&.|:@p@RM3 o.%2, and use the ideas in functions defined in terms of R30. ] 

 
 
 
42  Calculus 

D. Divergence and Laplacian 

The divergence and Laplacian are defined and used as follows: 

   DIV=: GRAD TRACE 

   LAP=: GRAD DIV 

   f=: +/\"1 
   f a 
1 3 6 

   f GRAD a 
1 0 0 
1 1 0 
1 1 1 

f DIV a 

3 

   g=: +/@(] ^ >:@i.@#)"1 
   g a 
32 

g LAP a 

22.0268 

It is difficult to provide a helpful interpretation of the divergence except in the context of 
an  already-familiar  physical  application,  and  the  reader  may  be  best  advised  to  seek 
interpretations  in  some  familiar  field.  However,  in  his  Advanced  Calculus  [8],  F.S. 
Woods offers the following: 

"The reason for the choice of the name divergence may be seen by interpreting F 
as equal to rv, where r is the density of a fluid and v is its velocity. ... Applied to 
an infinitesimal volume it appears that div F represents the amount of fluid per 
unit time which streams or diverges from a point." 

E. Symmetry, Skew-Symmetry, and Orthogonality 

A matrix that is equal to its transpose is said to be symmetric, and a matrix that equals the 
negative of its transpose is skew-symmetric. For example: 

   ]m=:VOLS GRAD lwh  The gradient of the volumes function 
1 0  0 
3 4  0 
6 8 12 

   |:m                The gradient is not symmetric 
1 3  6 
0 4  8 
0 0 12 

   ]ms=:(m+|:m)%2     The symmetric part of the gradient 
  1 1.5  3 
1.5   4  4 
  3   4 12 

   ]msk=:(m-|:m)%2    The skew-symmetric part   
  0 _1.5 _3 

 
 
    
 
 
 
 
 
 
    
    
    
Chapter 3  Vector Calculus  43 

1.5    0 _4 
  3    4  0 

   ms+msk             Sum of parts gives m 
1 0  0 
3 4  0 
6 8 12 

The  determinant  of  any  skew-symmetric  matrix  is  0,  and  its  vectors  therefore  lie  in  a 
plane: 

   det=:-/ . *        The determinant function 
   det msk            Shows that the vectors of msk lie in a plane 
0 

The  axes  of  a  rank-3  array  can  be  "transposed"  in  several  ways,  by  interchanging 
different pairs of axes. Such transposes are obtained by using |: with a left argument: 

   ]a=:i.2 2 2 
0 1 
2 3 

4 5 
6 7 
   0 2 1 |: a  Interchange last two axes 
0 2 
1 3 

4 6 
5 7 
   1 0 2 |: a  Interchange first two axes 
0 1 
4 5 

2 3 
6 7 

The permutation 0 2 1 is said to have odd parity because it can be brought to the normal 
order 0 1 2 by an odd number of interchanges of adjacent elements; 1 2 0 has even 
parity because it requires an even number of interchanges. The function C.!.2 yields the 
parity of its argument,  1 if the argument has even parity,  _1 if odd, and  0 if it is not a 
permutation. 

An array that is skew-symmetric under any interchange of axes is said to be completely 
skew.  Such  an  array  is  useful  in  producing  a  vector  that  is  normal  (or  orthogonal  or  
perpendicular)  to  a  plane.  In  particular,  we  will  use  it  in  a  function  called  norm  that 
produces  the  curl  of  a  vector  function,  a  vector  normal  to  the  plane  of  (the  skew-
symmetric part of) the gradient of the function. 

We will generate a completely skew array by applying the parity function to the table of 
all indices of an array: 

   indices=:{@(] # <@i.) 

   indices 3 
+-----+-----+-----+ 
|0 0 0|0 0 1|0 0 2| 

 
 
    
 
    
 
 
 
 
 
 
 
 
 
    
44  Calculus 

+-----+-----+-----+ 
|0 1 0|0 1 1|0 1 2| 
+-----+-----+-----+ 
|0 2 0|0 2 1|0 2 2| 
+-----+-----+-----+ 

+-----+-----+-----+ 
|1 0 0|1 0 1|1 0 2| 
+-----+-----+-----+ 
|1 1 0|1 1 1|1 1 2| 
+-----+-----+-----+ 
|1 2 0|1 2 1|1 2 2| 
+-----+-----+-----+ 

+-----+-----+-----+ 
|2 0 0|2 0 1|2 0 2| 
+-----+-----+-----+ 
|2 1 0|2 1 1|2 1 2| 
+-----+-----+-----+ 
|2 2 0|2 2 1|2 2 2| 
+-----+-----+-----+ 

   e=:C.!.2@>@indices   Result is called an "e-system" by McConnell [4]  

   e 3 
 0  0  0 
 0  0  1 
 0 _1  0 

 0  0 _1 
 0  0  0 
 1  0  0 

 0  1  0 
_1  0  0 
 0  0  0 

   <"2 e 4  Boxed for convenient viewing 
+--------+--------+--------+--------+ 
|0 0 0 0 |0 0  0 0|0 0 0  0|0  0 0 0| 
|0 0 0 0 |0 0  0 0|0 0 0 _1|0  0 1 0| 
|0 0 0 0 |0 0  0 1|0 0 0  0|0 _1 0 0| 
|0 0 0 0 |0 0 _1 0|0 1 0  0|0  0 0 0| 
+--------+--------+--------+--------+ 
|0 0 0  0|0 0 0 0 | 0 0 0 1|0 0 _1 0| 
|0 0 0  0|0 0 0 0 | 0 0 0 0|0 0  0 0| 
|0 0 0 _1|0 0 0 0 | 0 0 0 0|1 0  0 0| 
|0 0 1  0|0 0 0 0 |_1 0 0 0|0 0  0 0| 
+--------+--------+--------+--------+ 
|0  0 0 0|0 0 0 _1|0 0 0 0 | 0 1 0 0| 
|0  0 0 1|0 0 0  0|0 0 0 0 |_1 0 0 0| 
|0  0 0 0|0 0 0  0|0 0 0 0 | 0 0 0 0| 
|0 _1 0 0|1 0 0  0|0 0 0 0 | 0 0 0 0| 
+--------+--------+--------+--------+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 3  Vector Calculus  45 

|0 0  0 0| 0 0 1 0|0 _1 0 0|0 0 0 0 | 
|0 0 _1 0| 0 0 0 0|1  0 0 0|0 0 0 0 | 
|0 1  0 0|_1 0 0 0|0  0 0 0|0 0 0 0 | 
|0 0  0 0| 0 0 0 0|0  0 0 0|0 0 0 0 | 
+--------+--------+--------+--------+ 

Finally, we will use e in the definition of the function norm, as follows: 

   norm=:+/^:(]`(#@$)`(* e@#)) % !@(# - #@$) 

   mp=:+/ . *         Matrix product 

   ]m=:VOLS GRAD lwh  Gradient of the volumes function 
1 0  0 
3 4  0 
6 8 12 

   ]skm=:(m-|:m)%2    Skew part  
  0 _1.5 _3 
1.5    0 _4 
  3    4  0 

   ]orth=:norm m      Result is perpendicular to plane of skm 
_8 6 _3 

   orth mp skm        Test of perpendicularity 
0 0 0 

   norm skm           Norm of skew part gives the same result 
_8 6 _3 

   norm norm skm      Norm on a skew matrix is self-inverse 
  0 _1.5 _3 
1.5    0 _4 
  3    4  0 

These matters are discussed further in Chapter 6. 

F. Curl 

The curl is the perpendicular to the grade, and is produced by the function norm. We will 
use the adverb form as follows: 

   NORM=:norm@ 

   CURL=: GRAD NORM 

   VOLS CURL lwh 
_8 6 _3  

   subtotals=:+/\ 
   subtotals lwh 
4 7 9 

   subtotals CURL lwh 
_1 1 _1 

 
 
 
 
 
 
 
    
 
 
 
 
 
 
  
  
 
 
46  Calculus 

Interpretation  of  the  curl  is  perhaps  even  more  intractable  than  the  divergence.  Again 
Woods offers some help: 

The reason for the use of the word curl is hard to give without extended treatment 
of the subject of fluid motion. The student may obtain some help by noticing that 
if F is the velocity of a liquid, then for velocity in what we have called irrotational 
motion, curl F=0, and for vortex motion, curl F≠0. 

It may be shown that if a spherical particle of fluid be considered, its motion in a 
time dt may be analyzed into a translation, a deformation, and a rotation about an 
instantaneous axis. The curl of the vector v can be shown to have the direction of 
this axis and a magnitude equal to twice the instantaneous angular velocity. 

In  his  Div,  Grad,  Curl,  and  all  that  [9],  H.M.  Schey  makes  an  interesting  attempt  to 
introduce the concepts of the vector calculus in terms of a single topic. His first chapter 
begins with: 

In this text the subject of the vector calculus is presented in the context of simple 
electrostatics.  We  follow  this  procedure  for  two  reasons.  First,  much  of  vector 
calculus was invented for use in electromagnetic theory and is ideally suited to it. 
This  presentation  will  therefore  show  what  vector  calculus  is,  and  at  the  same 
time give you an idea of what it's for. Second, we have a deep-seated conviction 
that  mathematics  -in  any  case  some  mathematics-  is  best  discussed  in  a  context 
which is not exclusively mathematical. 

Schey's 
formulation, exhibit the powers of div, grad, and curl in joint use. 

includes  Maxwell's  equations  which, 

treatment 

in  Heaviside's  elegant 

F1  Experiment with GRAD, CURL, DIV, and JAC on the functions in Exercise B2. 

F2  Experiment with GRAD, CURL, DIV, and JAC on the following 1 1 functions: 

   q=: *:"1 
   r=: 4&A. @: q 
   s=: 1 1 _1&* @: r 
   t=: 3&A. @: ^ @: - 
   u=: ]% (+/@(*~)) ^ 3r2"0 

F3  Enter the definitions x=: 0&{ and y=: 1&{ and z=: 2&{, and use them to define 

the functions of the preceding exercise in a more conventional form. 

[ as=: *:@z,*:@x,-@*:@y  

at=: ^@-@y,^@-@z,^@-@x 

au=: (x,y,z) % (*:@x + *:@y + *:@z) ^ 3r2"0  ] 

F4  Experiment with LAP on various 0 1 functions. 

F5  Express  the  cross  product  of  Section  6G  so  as  to  show  its  relation  to  CURL.  See 

Section 6H. 

[ CR=: */ NORM         CURL=: GRAD NORM ]. 

 
 
    
 
47 

Chapter 
4 

Difference Calculus 

A. Introduction 

Although  published  some  fifty  years  ago,  Jordan's  Calculus  of  Finite  Differences  [10] 
still  provides  an  interesting  treatment.  In  his  introductory  section  on  Historical  and 
Biographical  Notes,  he  contrasts  the  difference  and  differential  (or  infinitesimal) 
calculus: 

Two  sorts  of  functions  are  to  be  distinguished.  First,  functions  in  which  the 
variable x may take every possible value in a given interval; that is, the variable is 
continuous. These functions belong to the domain of the Infinitesimal Calculus. 
Secondly, functions in which the variable takes only the given values x0, x1, x2, 
...  xn;  then  the  variable  is  discontinuous.  To  such  functions  the  methods  of 
Infinitesimal  Calculus  are  not  applicable,  The  Calculus  of  Finite  Differences 
deals especially with such functions, but it may be applied to both categories. 

The present brief treatment is restricted to three main ideas: 

1)  The development of a family of functions which behaves as simply under the 
difference  (secant  slope)  adverb  as  does  the  family  of  power  functions  ^&n 
under the derivative adverb. 

2)  The definition of a polynomial function in terms of this family of functions. 

3)  The  development  of  a  linear  transformation  from  the  coefficients  of  such  a  

polynomial to the coefficients of an equivalent ordinary polynomial. 

B. Secant Slope Conjunctions 

The slope of a line from the point x,f x to the point x,f(x+r) is said to be the secant 
slope of f for a run of r, or the r-slope of f at x. Thus: 

   cube=:^&3"0 
   x=:1 2 3 4 5  
   r=:0.1  
   ((cube x+r)-(cube x))%r 
3.31 12.61 27.91 49.21 76.51 

The same result is given by the secant-slope conjunction D: as follows: 

 
 
 
 
48  Calculus 

   r cube D: 1 x 
3.31 12.61 27.91 49.21 76.51 

   0.01 cube D: 1 x                                                                 
3.0301 12.0601 27.0901 48.1201 75.1501 

   0.0001 cube D: 1 x 
3.0003 12.0006 27.0009 48.0012 75.0015 

   cube d. 1 x 
3 12 27 48 75 
   3*x^2 
3 12 27 48 75 

In the foregoing sequence, smaller runs appear to be approaching a limiting value, a value 
given by the derivative. It is also equal to three times the square. 

The  alternate  expression  ((cube  x)-(cube  x-r))%r  could  also  be  used  to  define  a 
slope,  and  it  will  prove  more  convenient  in  our  further  work.  We  therefore  define  an 
alternate conjunction for it as follows: 

   SLOPE=:2 : (':'; 'x. u."0 D: n. y.-x.') 

   r cube SLOPE 1 x 
2.71 11.41 26.11 46.81 73.51 

   ((cube x)-(cube x-r))%r 
2.71 11.41 26.11 46.81 73.51 

   0.0001 cube SLOPE 1 x 
2.9997 11.9994 26.9991 47.9988 74.9985 

   cube d. 1 x 
3 12 27 48 75 

Much like the derivative, the slope conjunction can be used to give the slope of the slope, 
and so on. Thus: 

   cube d.2 x 
6 12 18 24 30 
   r cube SLOPE 2 x 
6 12 18 24 30 

We  will  be  particularly  concerned  with  the  "first"  slope  applied  to  scalar  (rank-0) 
functions, and therefore define a corresponding adverb: 

   S=:("0) SLOPE 1 
   r cube S x 
2.71 11.41 26.11 46.81 73.51 

C. Polynomials and Powers 

In Chapter 3, the analysis of the power function ^&n led to the result that the derivative of 
the polynomial c&p. could be written as another polynomial : (}.c*i.#c)&p.. 
This  is  an  important  property  of  the  family  of  power  functions,  and  we  seek  another 
family  of  functions  that  behaves  similarly  under  the  r-slope.  We  begin  by  adopting  the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
names p0 and p1 and p2, etc., for the functions ^&0 and ^&1 and ^&2, and by showing 
how each member of the family can be defined in terms of another. Thus: 

Chapter 4  Difference Calculus  49 

   p4=: ]*p3=: ]*p2=: ]*p1=: ]*p0=: 1:"0 

The  following  expressions  for  the  derivatives  of  sums  and  products  of  functions  were 
derived in Chapter 1. The corresponding expressions for the r-slopes may be obtained by 
simple algebra: 
                         f + g                        Sum 
                    (r f S)+(r g S)                   r-Slope 
                   (f d.1) + (g d.1)                  Derivative 

                         f * g 

                  Product 

    (f*(r g S))+((r f S)*g)-(r"0*(r f S)*(r g S))     r-Slope 
                  (f*g d.1)+(f d.1*g)                 Derivative 

For example: 

   r=:0.1 
   x=:1 2 3 4 5 
   f=:^&3 
   g=:^&2 

   (f+g) x 
2 12 36 80 150 

   r (f+g) S x                          Slope of sum  
4.61 15.31 32.01 54.71 83.41 

   (r f S x)+ (r g S x)                 Sum of slopes 
4.61 15.31 32.01 54.71 83.41 

   (f+g) d. 1 x                         Derivative of sum 
5 16 33 56 85 

   (f d.1 + g d.1) x 
5 16 33 56 85 

   r (f*g) S x                          Slope of product 
4.0951 72.3901 378.885 1217.58 3002.48 

   ]t1=:(f x)*(r g S x)                 Terms for slope of product 
1.9 31.2 159.3 505.6 1237.5 
   ]t2=:(r f S x)*(g x) 
2.71 45.64 234.99 748.96 1837.75 
   ]t3=:r * (r f S x) * (r g S x) 
0.5149 4.4499 15.4049 36.9799 72.7749 

   t1+t2-t3                             Sum and diff of terms gives slope 
4.0951 72.3901 378.885 1217.58 3002.48 
   (f*g) d. 1 x                         Derivative of product 
5 80 405 1280 3125 
   ((f d.1 *g) + (f*g d.1)) x 
5 80 405 1280 3125 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
50  Calculus 

Since the derivative of the identity function  ] is the constant function 1"0, expressions 
for  the  derivatives  of  the  power  functions  can  be  derived  using  the  expressions  for  the 
sum and product in informal proofs as follows: 

  p0 d.1   
  1"0 d.1    (]*p0) d.1 
  0"0   

p1 d.1 

(]*p0 d.1)+(] d.1*1"0) 
(]*0"0)+(1"0*1"0) 
1"0 

p2 d.1 
(]*p1) d.1 
(]*p1 d.1)+(] d.1*p1) 
(]*1"0)+(1"0*p1) 
p1+p1 
2"0*p1 

     p4 d.1 
     (]*p3) d.1 

  p3 d.1 
  (]*p2) d.1 
  (]*p2 d.1)+(] d.1*p2)      (]*p3 d.1)+(] d.1*p3) 
  (]*2"0*p1)+(1"0*p2)        (]*3"0*p2)+(1"0*p3) 
  (2"0*p2)+p2 
  3"0*p2 

     (3"0*p3)+p3 
     4"0*p3 

Each of the expressions in the proofs may be tested by applying it to an argument such as 
x=: i. 6, first enclosing the entire expression in parentheses.  

We  will  next  introduce  stope  functions  whose  behavior  under  the  slope  operator  is 
analogous to the behavior of the power function under the derivative. 

D. Stope Functions 

The list x+r*i.n begins at x and changes in steps of size r, like the steps in a mine stope 
that  follows  a  rising  or  falling  vein  of  ore.  We  will  call  the  product  over  such  a  list  a 
stope: 

   x=:5 
   r=:0.1 
   n=:4 

   x+r*i.n 
5 5.1 5.2 5.3 

   */x+r*i.n 
702.78 

   */x+1*i.n   Case r=:1 is called a rising factorial 
1680 

   */x+_1*i.n  Falling factorial 
120 

   */x+0*i.n   Case r=:0 gives product over list of n x's 
625 
   x^n         Equivalent to the power function 
625 
The two final examples illustrate the fact that the case  r=:0 is equivalent to the power 
function. We therefore treat the stope as a variant of the power function, produced by the 
conjunction !. as follows: 

   x ^!.r n 

 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 4  Difference Calculus  51 

702.78 

   x ^!.0 n 
625 

   stope=: ^!.    The stope adverb 
   x r stope n 
702.78 

We  now  define  a  set  of  stope  functions  analogous  to  the  functions  p0=:^&0  and 
p1=:^&1, etc. used for successive powers. Thus: 

q0=:r stope&0 

q1=:r stope&1 

q2=:r stope&2 

q3=:r stope&3 

q4=:r stope&4 

   x=:0 1 2 3 4 
   >(q0;q1;q2;q3;q4) x 
1     1      1      1       1 
0     1      2      3       4 
0   1.1    4.2    9.3    16.4 
0  1.32   9.24  29.76   68.88 
0 1.716 21.252 98.208 296.184 

E. Slope of the Stope 

We will now illustrate that the r-slope of  r stope&n is n*r stope&(n-1): 

   r q4 S x 
0 5.28 36.96 119.04 275.52 

   4*q3 x 
0 5.28 36.96 119.04 275.52 

   r q3 S x 
0 3.3 12.6 27.9 49.2 

      3*q2 x 
0 3.3 12.6 27.9 49.2 

This  behavior  is  analagous  to  that  of  the  power  functions  p4,  p3,  etc.  under  the 
derivative. Moreover, the stope functions can be defined as a sequence of products, in a 
manner similar to that used for defining the power functions. Thus (using R for a constant 
function): 

   R=:r"0 

   f4=:(]+3"0*R)*f3=:(]+2"0*R)*f2=:(]+1"0*R)*f1=:(]+0"0*R)*f0=:1"0 

From these definitions, the foregoing property of the r-slopes of stopes can be obtained in 
the manner used for the derivative of powers, but using the expression: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52  Calculus 

   (f*(r g S))+((r f S)*g)-(R*(r f S)*(r g S)) 

For the r-slope of the product of functions instead of the: 

                  (f*g d.1)+(f d.1*g) 

used for the derivative. 

F. Stope Polynomials 

The polynomial function p. also possesses a variant p.!.r, in which the terms are based 
upon the stope ^!.r rather than upon the power ^ . For example: 

   spr=:p.!.r 
   c=:4 3 2 1 

   c&spr x 
4 10.52 27.64 61.36 117.68 

   (4*x ^!.r 0)+(3*x^!.r 1)+(2*x^!.r 2)+(1*x^!.r 3) 
4 10.52 27.64 61.36 117.68 

The r-slope of  the stope polynomial c&spr then behaves analogously to the derivative of 
the ordinary polynomial. Thus: 

   deco=: 1:}.]*i.@#     Function for coefficients of derivative polynomial   
   ]d=:deco c 
3 4 3 
   c&p. x                Ordinary polynomial with coefficients c 
4 10 26 58 112 

   c&p. d.1 x            Derivative of polynomial 
3 10 23 42 67 
   d p. x                Agrees with polynomial with "derivative" coefficients 
3 10 23 42 67 

   spr=:p.!.r            Stope polynomial for run r 

   c&spr x               Stope polynomial with coefficients c 
  4 10.52 27.64 61.36 117.68 

   r c&spr S x           r-slope of stope polynomial 
3 10.3 23.6 42.9 68.2 

   d&spr x               Agrees with stope polynomial with coefficients d 
3 10.3 23.6 42.9 68.2 

We now define a stope polynomial adverb, whose argument specifies the run: 

   SPA=: 1 : '[ p.!.x. ]' 

   c 0 SPA x             Zero gives ordinary polynomial 
4 10 26 58 112 
   c p. x 
4 10 26 58 112 

   c r SPA x             Stope with run r 

 
 
 
 
 
 
   
 
 
 
    
 
 
 
 
 
 
 
Chapter 4  Difference Calculus  53 

4 10.52 27.64 61.36 117.68 

Integration behaves analogously: 
   adeco=: [ , ] % >:@i.@#@]      The integral coefficient function 

   (0 adeco c)&spr x   
0 6.959 25.773 70.342 160.566 

G. Coefficient Transformations 

It  is  important  to  be  able  to  express  an  ordinary  polynomial  as  an  equivalent  stope 
polynomial, and vice versa. We will therefore show how to obtain the coefficients for an 
ordinary polynomial that is equivalent to a stope polynomial with given coefficients: 

The  expression  vm=:x  ^/  i.#c  gives  a  table  of  powers  of  x  that  is  called  a 
Vandermonde  matrix.  If  mp=:+/  .  *  is  the  matrix  product,  then  vm  mp  c  gives 
weighted  sums  of  these  powers  that  are  equivalent  to  the  polynomial  c  p.  x.  For 
example:  

   x=:2 3 5 7 11 
   c=:3 1 4 2 1 
   c p. x 
53 177 983 3293 17801 

   ]vm=:x ^/ i.#c 
1  2   4    8    16 
1  3   9   27    81 
1  5  25  125   625 
1  7  49  343  2401 
1 11 121 1331 14641 

   mp=:+/ . * 

   ]y=:vm mp c 
53 177 983 3293 17801 

If x has the same number of elements as c, and if the elements of x are all distinct, then 
the matrix vm is non-singular, and its inverse can be used to obtain the coefficients of a 
polynomial  that  gives  any  specified  result.  If  the  result  is  y,  these  coefficients  are,  of 
course, the original coefficients c. Thus: 

   (%.vm) mp y 
3 1 4 2 1 

The coefficients c used with a stope polynomial give a different result y2, to which we 
can  apply  the  same  technique  to  obtain  coefficients  c2  for  an  equivalent  ordinary 
polynomial:  
   r=:0.1 
   ]y2=:c p.!.r x 
61.532 200.928 1077.98 3536.71 18690.4 

   ]c2=:(%.vm) mp y2 
3 1.446 4.71 2.6 1 

   c2 p. x 
61.532 200.928 1077.98 3536.71 18690.4 

 
 
 
 
 
 
    
 
 
 
 
 
 
 
54  Calculus 

We now incorporate this method in a conjunction FROM, such that r1 FROM r2 gives a 
function which, applied to coefficients c, yields d such that d p.!.r1 x is equivalent to 
c p.!.r2 x. Thus: 

   VM=:1 : '[ ^!.x./i.@#@]' 

   FROM=: 2 : '((y. VM %. x. VM)~ @i.@#) mp ]' 

   ]cr=:r FROM 0 c 
3 0.619 3.47 1.4 1 

   cr p.!.r x 
53 177 983 3293 17801 
   c p.!.0 x 
53 177 983 3293 17801 

A  conjunction  that  yields  the  corresponding  Vandermonde  matrix  rather  than  the 
coefficients  can  be  obtained  by  removing  the  final  matrix  product  from  FROM.  For  the 
case of the falling factorial function (r=:_1) this matrix gives results of general interest: 

   VMFROM=: 2 : '((y. VM %. x. VM)~ @i.@#)' 

   0 VMFROM _1 c 
1 0  0  0  0 
0 1 _1  2 _6 
0 0  1 _3 11 
0 0  0  1 _6 
0 0  0  0  1 

   _1 VMFROM 0 c 
1 0 0 0 0 
0 1 1 1 1 
0 0 1 3 7 
0 0 0 1 6 
0 0 0 0 1 

The elements of the last of these tables are called Stirling numbers of the scond kind, and 
the magnitudes of those of the first are Stirling numbers of the first kind. 

G1   Experiment with the adverb VM. 
D2  Enter  expressions  to  obtain  the  matrices  S1  and  S2  that  are  Stirling  numbers  of 

order 6 (that is, $ S1 is 6 6). 

[c=: 6?9 

 S1=:0 FROM 1 c 

S2=:1 FROM 0 c] 

D3  Test the assertion that S1 is the inverse of S2. 
H. Slopes as Linear Functions 

A  linear  function  can  be  represented  by  a  matrix  bonded  with  the  matrix  product.  For 
example, if v is a vector and ag=: <:/~@i.@# , then sum=: ag v is a summation or 
aggregation  matrix;  the  linear  function  (mp=:  +/  .  *)&sum  produces  sums  over 
prefixes of its argument. Thus: 

   ]v=: ^&3 i. 6 
0 1 8 27 64 125 

 
 
 
 
 
 
 
    
 
 
 
 
 
 
Chapter 4  Difference Calculus  55 

   mp=: +/ . * 
   ag=: <:/~@i.@# 
   sum=: ag v 
   sum 
1 1 1 1 1 1  
0 1 1 1 1 1  
0 0 1 1 1 1  
0 0 0 1 1 1  
0 0 0 0 1 1  
0 0 0 0 0 1  

sum mp sum 

1 2 3 4 5 6 
0 1 2 3 4 5 
0 0 1 2 3 4 
0 0 0 1 2 3 
0 0 0 0 1 2 
0 0 0 0 0 1    

   v mp sum 
0 1 9 36 100 225  

v mp (sum mp sum) 

0 1 10 46 146 371 

   +/\v 
0 1 9 36 100 225  

+/\ +/\v 

0 1 10 46 146 371 

   mp&sum v   
0 1 9 36 100 225 

mp&(sum mp sum) v 

0 1 10 46 146 371 

   L1=: mp&sum   

L2=:mp&(sum mp sum) 

   L1 v 
0 1 9 36 100 225  

L2 v 

0 1 10 46 146 371 

   +/\v 
0 1 9 36 100 225  

+/\ +/\v 

0 1 10 46 146 371 

   mp&sum v   
0 1 9 36 100 225 

mp&(sum mp sum) v 

0 1 10 46 146 371 

   L1=: mp&sum   

L2=:mp&(sum mp sum) 

   L1 v 
0 1 9 36 100 225  

L2 v 

0 1 10 46 146 371 

The results of L1 v are rough approximations to the areas under the graph of ^&3, that is, 
to  the    integrals  up  to  successive  points.  Similarly,  the  inverse  matrix  dif=:  %.  sum 
can define a linear function that produces differences between successive elements of its 
argument. For example: 

   dif=: %. sum 

   dif  
1 _1  0  0  0  0  
0  1 _1  0  0  0  
0  0  1 _1  0  0  
0  0  0  1 _1  0  
0  0  0  0  1 _1  
0  0  0  0  0  1  

dif mp dif 
1 _2  1  0  0  0 
0  1 _2  1  0  0 
0  0  1 _2  1  0 
0  0  0  1 _2  1 
0  0  0  0  1 _2 
0  0  0  0  0  1    

   LD1=: mp&dif 
   LD1 v 
0 1 7 19 37 61  

LD2=: mp&(dif mp dif) 
LD2 v 

0 1 6 12 18 24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
56  Calculus 

These  results  may  be  compared  with  the  1-slopes  of  the  cube  function,  noting  that  the 
first  k  elements  of  the  kth  slope  are  meaningless.  The  r-slopes  of  a  function  f  can  be 
obtained  similarly,  by  applying  %&r@LD1  to  the  results  of  f  applied  to  arguments 
differing by r. For example: 

   ]x=: r*i.6 [ r=: 0.1 
0 0.1 0.2 0.3 0.4 0.5 

   %&r@LD1 ^&3 x 
0 0.01 0.07 0.19 0.37 0.61 
   r (^&3) S x 
0.01 0.01 0.07 0.19 0.37 0.61 

Because the results for the 1-slope are so easily extended to the case of a general r-slope, 
we will discuss only the 1-slope provided by the linear function DIF=: mp&dif . 

Consider the successive applications of DIF to the identity matrix: 

   ID=: (i. =/ i.) 6 
   DIF=: mp&dif 
   ID                  DIF ID 
1 0 0 0 0 0  
0 1 0 0 0 0    
0 0 1 0 0 0    
0 0 0 1 0 0    
0 0 0 0 1 0    
0 0 0 0 0 1    

DIF DIF ID 
1 _1  0  0  0  0 
1 _2  1  0  0  0 
0  1 _1  0  0  0    0  1 _2  1  0  0 
0  0  1 _1  0  0    0  0  1 _2  1  0 
0  0  0  1 _1  0    0  0  0  1 _2  1 
0  0  0  0  1 _1    0  0  0  0  1 _2 
0  0  0  0  0  1    0  0  0  0  0  1 

   2 3$ <"2@(DIF^:0 1 2 3 4 5) ID 
+----------------+----------------+-------------------+ 
|  1 0 0 0 0 0   |1 _1  0  0  0  0| 1 _2  1  0  0  0  | 
|  0 1 0 0 0 0   |0  1 _1  0  0  0| 0  1 _2  1  0  0  | 
|  0 0 1 0 0 0   |0  0  1 _1  0  0| 0  0  1 _2  1  0  | 
|  0 0 0 1 0 0   |0  0  0  1 _1  0| 0  0  0  1 _2  1  | 
|  0 0 0 0 1 0   |0  0  0  0  1 _1| 0  0  0  0  1 _2  | 
|  0 0 0 0 0 1   |0  0  0  0  0  1| 0  0  0  0  0  1  | 
+----------------+----------------+-------------------+ 
|1 _3  3 _1  0  0|1 _4  6 _4  1  0|1 _5 10 _10   5  _1| 
|0  1 _3  3 _1  0|0  1 _4  6 _4  1|0  1 _5  10 _10   5| 
|0  0  1 _3  3 _1|0  0  1 _4  6 _4|0  0  1  _5  10 _10| 
|0  0  0  1 _3  3|0  0  0  1 _4  6|0  0  0   1  _5  10| 
|0  0  0  0  1 _3|0  0  0  0  1 _4|0  0  0   0   1  _5| 
|0  0  0  0  0  1|0  0  0  0  0  1|0  0  0   0   0   1| 
+----------------+----------------+-------------------+  

The foregoing results suggest that the k-th difference is a weighted sum of k+1 elements 
in which the weights are the alternating binomial coefficients of order k. For example: 
   ]v=: ^&3 i. 8 
0 1 8 27 64 125 216 343 

   w=: mp & 1 _2 1 
   w 0 1 2{v 
6 
   w 1 2 3{v 
12 

w 2 3 4{v 

w 3 4 5{v 

18 

24 

   3 <\ v       
+-----+------+-------+---------+----------+-----------+ 

Box applied to each 3-element window 

 
 
 
 
 
 
Chapter 4  Difference Calculus  57 

|0 1 8|1 8 27|8 27 64|27 64 125|64 125 216|125 216 343| 
+-----+------+-------+---------+----------+-----------+ 

   3 w\ v   
6 12 18 24 30 36 
   4 (mp & _1 3 _3 1)\ v   
 6 6 6 6 6                 

Weighting function applied to  
each 3-element window 
The third difference of the cube 
function is the constant !3 

   6 (mp & _1 5 _10 10 _5 1)\ ^&5 i. 11 
120 120 120 120 120 120    

The  binomial 
(i. n+1)!n. For example: 

coefficients  of  order  n 

are  provided  by 

the 

expression 

    (i.@>: ! ]) n=: 5 
1 5 10 10 5 1 

The  alternating coefficients could be obtained by multiplying alternate elements by _1. 
However, they are provided more directly by the extension of the function ! to negative 
arguments, as may be seen in the following "bordered" function table: 

   ]i=: i: 7 
_7 _6 _5 _4 _3 _2 _1 0 1 2 3 4 5 6 7 

    i ! table i 
+--+-------------------------------------------------+ 
|  |   _7   _6   _5   _4  _3 _2 _1 0 1 2 3 4  5  6  7| 
+--+-------------------------------------------------+ 
|_7|    1   _6   15  _20  15 _6  1 0 0 0 0 0  0  0  0| 
|_6|    0    1   _5   10 _10  5 _1 0 0 0 0 0  0  0  0| 
|_5|    0    0    1   _4   6 _4  1 0 0 0 0 0  0  0  0| 
|_4|    0    0    0    1  _3  3 _1 0 0 0 0 0  0  0  0| 
|_3|    0    0    0    0   1 _2  1 0 0 0 0 0  0  0  0| 
|_2|    0    0    0    0   0  1 _1 0 0 0 0 0  0  0  0| 
|_1|    0    0    0    0   0  0  1 0 0 0 0 0  0  0  0| 
| 0|    1    1    1    1   1  1  1 1 1 1 1 1  1  1  1| 
| 1|   _7   _6   _5   _4  _3 _2 _1 0 1 2 3 4  5  6  7| 
| 2|   28   21   15   10   6  3  1 0 0 1 3 6 10 15 21| 
| 3|  _84  _56  _35  _20 _10 _4 _1 0 0 0 1 4 10 20 35| 
| 4|  210  126   70   35  15  5  1 0 0 0 0 1  5 15 35| 
| 5| _462 _252 _126  _56 _21 _6 _1 0 0 0 0 0  1  6 21| 
| 6|  924  462  210   84  28  7  1 0 0 0 0 0  0  1  7| 
| 7|_1716 _792 _330 _120 _36 _8 _1 0 0 0 0 0  0  0  1| 
+--+-------------------------------------------------+ 
Except for a change of sign required for those of odd order, the required alternating 
binomial coefficients can be seen in the diagonals beginning in row 0 of the negative 
columns of the foregoing table. The required weights are therefore given by the following 
function: 

   w=: _1&^ * (i. ! i. - ])@>:"0 
   w 0 1 2 3 4 
 1  0  0  0 0 
_1  1  0  0 0 
 1 _2  1  0 0 
_1  3 _3  1 0 
 1 _4  6 _4 1 

Differences may therefore be expressed as shown in the following examples: 

 
 
 
 
 
 
 
 
58  Calculus 

   ]v=: ^&3 i. 8 
0 1 8 27 64 125 216 343 

   2 mp & (w 1)\ v 
1 7 19 37 61 91 127 

   3 mp & (w 2)\ v 
6 12 18 24 30 36 

   5 mp & (w 4)\ ^&6 i. 10 
1560 3360 5880 9120 13080 17760 

It may also be noted that the diagonals beginning in row 0 of the non-negative columns 
of the table contain the weights appropriate to successive integrations as, for example, in 
the diagonals beginning with 1 1 1 1 1 and 1 2 3 4 5 and 1 3 6 10 15. This fact 
can  be  used  to  unite  the  treatment  of  derivatives  and  integrals  in  what  Oldham  and 
Spanier  call  differintegrals  in  their  Fractional  Calculus  [5].  Moreover,  the  fact  that  the 
function ! is generalized to non-integer arguments will be used (in Chapter 5) to define 
fractional derivatives and integrals. For example: 

   (i.7)!4 
1 4 6 4 1 0 00 

   0j4":(0.01+i.7)!4  Formatted to four decimal places 
1.0210  4.0333  5.9998  3.9666  0.9793 _0.0020  0.0003 

 
 
 
 
 
 
 
59 

Chapter 
5 

Fractional Calculus 

A. Introduction 

The differential and the difference calculus of Chapters 2 and 4 concern derivatives and 
integrals  of  integer  order.  The  fractional  calculus  treated  in  this  chapter  unites  the 
derivative  and  the  integral  in  a  single  differintegral,  and  extends  its  domain  to  non-
integral orders. 

Section H of Chapter 1 included a brief statement of the utility of the fractional calculus 
and  a  few  examples  of  fractional  derivatives  and  integrals.  Section  E  of  Chapter  4 
concluded  with  the  use  of  the  alternating  binomial  coefficients  produced  by  the  outof 
function ! to compute differences of arbitrary integer order. The extension of the function 
! to non-integer arguments was also cited as the basis for an analogous treatment of non-
integer differences, and therefore as a basis for approximating non-integer differintegrals. 

Our treatment of the fractional calculus will be  based on Equation 3.2.1 on page 48 of 
OS (Oldham and Spanier [5]). Thus: 

   f=: ^&3 

Function treated 

   q=: 2 

   N=: 100 
   a=: 0 

   x=: 3 

Order of differintegral 

Number of points used in approximation 
Starting point of integration 

Argument 

   OS=: '+/(s^-q)*(j!j-1+q)*f x-(s=:N%~x-a)*j=:i.N' 
   ". OS 
17.82 

Execute the Oldham Spanier expression to obtain the 
approximation to the second derivative of f at x 

   q=: 1 
   ". OS 
26.7309 

   q=: 0  

   ". OS 

Approximation to the first derivative (the exact value   
is 3*x^2, that is, 27) 

Zeroth derivative (the function itself) 

 
 
 
 
 
 
 
 
 
 
60  Calculus 

27 

   q=: _1 
   ". OS 
20.657 

   q=: _2 
   ". OS 
12.7677 

   q=: 0.5 
   ". OS 
27.9682 

The first integral (exact value is 4%~x^4) 

The second integral (exact value is 20%~x^5) 

Semi-derivative (exact value is 28.1435) 

We will use the expression  OS to define a fractional differintegral conjunction  fd such 
that q (a,N) fd f x produces an N-point approximation to the q-th derivative of the 
function f at x if q>:0, and the (|q)-th integral from a to x if q is negative: 

   j=: ("_) (i.@}.@) 
   s=: (&((] - 0: { [) % 1: { [)) (@]) 
   m=: '[:+/(x.s^0:-[)*(x.j!x.j-1:+[)*[:y.]-x.s*x.j' 
   fd=: 2 : m  

For example: 

   2 (0,100) fd (^&3) 3 
17.82 
   2 (0,100) fd (^&3)"0 i. 4 
_. 5.94 11.88 17.82 

An  approximation  to  a  derivative  given  by  a  set  of  N  points  will  be  better  over  shorter 
intervals. For example: 

   x=: 6 
   1 (0,100) fd f x 
106.924 
   3*x^2 
108 

   1 ((x-0.01),100) fd f x 
107.998 

Anyone wishing to study the OS formulation and discussion will need to appreciate the 
relation  between  the  function  !  used  here,  and  the  gamma  function  (G)  used  by  OS. 
Although the gamma function was known to be a generalization of the factorial function 
on  integer  arguments,  it  was  not  defined  to  agree  with  it  on  integers.  Instead,  G  n  is 
is  here  defined  as 
equivalent 
(!n)%(!m)*(!n-m); the three occurrences of the gamma function in Equation 3.2.1 of 
OS may therefore be written as j!j-1+q, as seen in the expression OS used above. 

to  !  n-1.  Moreover, 

the  dyadic  case  m!n 

The related complete beta function is also used in OS, where it is defined (page 21) by 
B(p,q) = (G p) * (G q) % (G p+q). This definition may be re-expressed so as to show its 

 
 
 
 
 
 
 
 
 
 
 
 
relation  to  the  binomial  coefficients,  by  substituting  m  for  p-1  and  n  for  p+q-1.  The 
expression B(p,q) is then equivalent to (!m)*(!n-m)%(!n), or simply % m!n. 

Chapter 5  Fractional Calculus  61 

B. Table of Semi-Differintegrals 

The differintegrals of the sum f+g and the difference f-g are easily seen to be the sums 
and  differences  of  the  corresponding  differintegrals,  and  it  might  be  expected  that 
fractional derivatives satisfy further relationships analogous to those shown in Section 2K 
for  the  differential  calculus.  Such  relations  are  developed  by  Oldham  and  Spanier,  but 
most are too complex for treatment here.  

We will confine attention to a few of their semi-differintegrals (of orders that are integral 
multiples of 0.5 and _0.5). We begin by defining a conjunction FD (similar to fd, but 
with  the  parameters  a  and  N  fixed  at  0  and  100),  and  using  it  to  define  adverbs  for 
approximating semi-derivatives and semi-integrals: 

   FD=: 2 : 'x."0 (0 100) fd y. ]' ("0) 
   x=: 1 2 3 4 5 
   1 FD (^&3) x 
2.9701 11.8804 26.7309 47.5216 74.2525 

   3*x^2 
3 12 27 48 75 

Exact expression  

   si=: _1r2 FD 
   sd=: 1r2 FD 
   s3i=: _3r2 FD 
   ^&3 sd x 
1.79416 10.1493 27.9682 57.4131 100.296 

Semi-derivative of cube 

_1r2 is the rational constant  _1%2 

   sdc=: *:@!@[*(4&*@] ^ [) % !@+:@[ *%:@o.@] 
   3 sdc x 
1.80541 10.2129 28.1435 57.773 100.925 

Exact expression from OS[5] page 119 

   ^&3 si x  
0.520349 5.88707 24.3343 66.6046 145.442 

Semi-integral of cube 

   sic=:*:@!@[*(4&*@]^+&0.5@[)%!@>:@+:@[*%:@o.@1: 
   3 sic x 
0.51583 5.83596 24.123 66.0263 144.179 

Exact function from OS[5] page 119    

Although  the  conjunctions  sd  and  si  and  s3i  provide  only  rough  approximations,  we 
will  use  them  in  the  following  table  to  denote  exact  conjunctions  for  the  semi-
differintegrals.  This  makes  it  possible  to  use  the  expressions  in  computer  experiments, 
remembering, of course, to wrap any fork in parentheses before applying it.  

Function   

Semi-derivative 

f sd + g sd 

f sd - g sd 

Semi-integral 

f si + g si 

f si - g si 

(]*g sd)+-:@(g si) 

(]*g si)--:@(g s3i) 

c"0 * g sd 

c"0 % %:@o. 

%@%:@o. 

+:@%:@%@o.@% 

c"0 * g si 

(2*c)"0*%:@(]%1p1"0) 

+:@%:@%@o.@% 

4r3"0*(^&3r2)%1p1r2"0 

f+g 

f-g 

]*g  

c"0*g 

c"0 

1"0 

] 

 
 
 
 
 
 
 
 
 
 
62  Calculus 

*: 

%: 

8r3"0*(^&3r2)%1p1r2"0 

16r15"0*(^&5r2)%1p1r2"0 

1r2p1r2"0  

-:@(]*1p1r2"0) 

%@>: 

(%:@>:-%:*_5&o.@%: 

+:@(_5&o.@%:)%%:@(>:*1p1"0) 

  ).%%:@o.*>:^3r2"0 

%@%: 

%:@>: 

0"0 

%:@(1p1"0) 

1p1r2"0%~%:@%+_3&o.@%: 

1p1r2"0%~%:+>:*_3&o.@%: 

%@%:@>: 

%@(>:*%:*1p1r2"0) 

+:@(_3&o.)@%:%1p1r2"0 

^&p 

^&n 

%/@!@((p-0 1r2)"0 

%/@!@((p+0 1r2)"0)*^&(p+1r2) 

  )*^&(p-1r2) 

*:@!@(n"0)*^&n@4: 

*:@!@(n"0)*^&(n+1r2)@4: 

  %!@+:@(n"0)*%:@o. 

%!@>:@+:@(n"0)*1p1r2" 

^&(n+1r2) 

!@>:@+:@(n"0)*1p 

!@>:@>:@+:@(n"0)*1p1 

  1r2"0*^&n@(1r4& 

r2"0*^&(>:n)@(%&4) 

  *)%+:@*:@!@(n"0) 

_3&o.@%: 

-:@%:@(1p1"0%>:) 

%*:@!@>:@(n"0) 

1p1r2"0*%:&.>: 

Notes: 

 f  Function 

 g  Function 

 n  Integer 

 p  Constant greater than _1 

 c  Constant 

To experiment with entries in the foregoing table, first enter the definitions of sd and si 
and  s3i,  and  definitions  for  f  and  g  (such  as  f=:  ^&3  and  g=:  ^&2).  The  first  row 
would then be treated as: 

   (f+g) sd x=: 1 2 3 4 
3.29303 14.3887 35.7565 69.404 

   (f sd + g sd) x 
3.29303 14.3887 35.7565 69.404 
   (f+g) si x 
1.12591 9.31267 33.7741 85.9827 

   (f si + g si) x 
1.12591 9.31267 33.7741 85.9827 

Entries  in  the  table  can  be  rendered  more  readable  to  anyone  familiar  only  with 
conventional notation by a few assignments such as: 

        twice=: +: 

         sqrt=: %: 

      pitimes=: o. 

   reciprocal=: % 

           on=: @ 

 
 
   
 
 
 
 
 
 
 
The table entry for the semi-derivative of the identity function could then be expressed as 
follows: 

Chapter 5  Fractional Calculus  63 

   ] sd x 
1.12697 1.59378 1.95197 2.25394   

   twice on sqrt on reciprocal on pitimes on reciprocal x 
1.12838 1.59577 1.95441 2.25676 

Alternatively, it can be expressed using the under conjunction as follows: 

  under=: &. 
  twice on sqrt on (pitimes under reciprocal) x 
1.12838 1.59577 1.95441 2.25676 

 
 
 
 
 
 
65 

Chapter 
6 

Properties of Functions 

A. Introduction 

In this chapter we will analyze relations among the functions developed in Chapter 2, and 
express  them  all  as  members  of  a  single  family.  We  will  first  attempt  to  discover 
interesting relations by experimentation, and then to construct proofs. In this section we 
will use the growth and decay functions to illustrate the process, and then devote separate 
sections to experimentation and to proof. We will use the adverb D=: ("0)(D.1) . 

The reader is urged to try to develop her own experiments before reading Section B, and 
her own proofs before reading Section C. 

In  Sections  E  and  F  of  Chapter  2,  the  functions  ec  and  eca  were  developed  to 
approximate growth and decay functions. Thus: 

   eca=: _1&^ * ec=: %@!   
   ec i.7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 

   eca i.7 
1 _1 0.5 _0.166667 0.0416667 _0.00833333 0.00138889 

We will now use the approximate functions to experiment with growth and decay: 

   GR=: (ec i.20)&p. 

   DE=: (eca i.20)&p. 

It  might  be  suspected  that  the  decay  function  would  be  the  reciprocal  of  the  growth 
function,  in  other  words  that  their  product  is  one.  We  will  test  this  conjecture  in  two 
ways, first by computing the product directly, and then by computing the coefficients of 
the corresponding product polynomial. Thus: 

   GR x=: 0 1 2 3 4 
1 2.71828 7.38906 20.0855 54.5981 

   DE x 
1 0.367879 0.135335 0.0497871 0.0183153 
   (GR x) * (DE x) 

 
 
 
 
 
 
 
 
66  Calculus 

1 1 1 1 0.999979 

   (GR * DE) x 
1 1 1 1 0.999979 

   PP=: +//.@(*/) 
   1 2 1 PP 1 3 3 1 
1 5 10 10 5 1 

   6{. (ec i.20) PP (eca i.20) 
1 0 0 _2.77556e_17 6.93889e_18 _1.73472e_18 
   6{.(ec PP eca) i.20 
1 0 0 _2.77556e_17 6.93889e_18 _1.73472e_18 
   ((ec PP eca) i.20) p. x 
1 1 1 1 0.999979 

Since the growth and decay functions were defined only in terms of their derivatives, any 
proof of the foregoing conjecture must be based on these defining properties. We begin 
by determining the derivative of the product as follows: 

   (DE*GR) d.1 

   (DE*GR d.1)+(DE d.1 *GR) 

See Section 2K 

   (DE*GR)+(DE d.1 *GR) 

Definition of GR 

   (DE*GR)+(-@DE*GR) 

Definition of DE 

   (DE*GR)-(DE*GR) 

   0"0 

Consequently,  the  derivative  of  DE*GR  is  zero;  DE*GR  is  therefore  a  constant,  whose 
value may be determined by evaluating the function at any point. At the argument 0, all 
terms of the defining polynomials are zero except the first. Hence the constant value of 
DE*GR is one, and it is defined by the function 1"0 . Thus: 

   (DE*GR) x 
1 1 1 1 0.999979 

1"0 x 

1 1 1 1 1 

A second experiment is suggested by the demonstration (in Section I of Chapter 2) that 
the derivative of the function f=: ^@(r&*) is r times f; the case r=: _1 should give 
the decay function: 

   r=: _1 
   DE x=: 0 1 2 3 4 
1 0.367879 0.135335 0.0497871 0.0183153 

   ^@(r&*) x 
1 0.367879 0.135335 0.0497871 0.0183156 
   ^ AM r x 
1 0.367879 0.135335 0.0497871 0.0183156 

 
 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  67 

The final expression uses the scaling conjunction of Section I of Chapter 2. We may now 
conclude that the function ^ AM r describes growth at any rate, and that negative values 
of r subsume the case of decay. 

In  the  foregoing  discussion  we  have  used  simple  observations  (such  as  the  probable 
reciprocity  of  growth  and  decay)  to  motivate  experiments  that  led  to  the  statement  and 
proof  of  significant  identities.  To  any  reader  already  familiar  with  the  exponential 
function  these  matters  may  seem  so  obvious  as  to  require  neither  suggestion  nor proof, 
and he may therefore miss the fact that all is based only on the bare definitions given in 
Sections 2E and 2F. 

Similar remarks apply to the hyperbolic and circular functions treated in Sections 2G,H. 
The points might be better made by using featureless names such as f1, f2, and f3 for 
the functions. However, it seems better to adopt commonly used names at the outset. 

A1  Test the proof of this section by entering each expression with an argument. 

A2  Make and display the table  T whose (counter) diagonal sums form the product of 

the coefficients ec i.7 and eca i.7. 

[  T=: (ec */ eca) i.7  ] 

A3  Denoting the elements of the table t=: 2 2{.T by t00, t01, t10, and t11, write 
explicit  expressions  for  them.  Then  verify  that  t00  and  t01+t10  agree  with  the 
first two elements of the product polynomial given in the text. 

[  t00 is 1*1      t01+t10 is (1*_1)+(1*1)  ] 

A4  Use  the  scheme  of  A3  on  larger  subtables  of  T  to  check  further  elements  of  the 

polynomial product. 

A5  Repeat the exercises of this section for other relations between functions that might 

be known to you. 

[Consider  the  functions  f=:  ^*^  and  g=:  ^@+:  beginning by applying them to 
arguments such as f"0 i.5 and g"0 i. 5] 

 B. Experimentation 

Hyperbolics. One hyperbolic may be plotted against the other as follows: 

   sinh=: 5&o. 
   cosh=: 6&o. 
   load'plot' 
   plot (cosh;sinh) 0.1*i:21 

The resulting plot suggests a hyperbola satisfying the equation 1= (sqr x)-(sqr y). Thus: 

 
 
 
 
68  Calculus 

   (*:@cosh - *:@sinh) i:10 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Finally, each of the hyperbolics is the derivative of the other, and their second derivatives 
equal the original functions: 

   sinh x=: 0 1 2 3 4 
0 1.1752 3.62686 10.0179 27.2899 
   cosh x 
1 1.54308 3.7622 10.0677 27.3082 

   sinh d.1  x 
1 1.54308 3.7622 10.0677 27.3082 
   cosh d.1  x 
0 1.1752 3.62686 10.0179 27.2899 

   sinh d.2 x 
0 1.1752 3.62686 10.0179 27.2899 
   cosh d.2 x 
1 1.54308 3.7622 10.0677 27.3082 

Circulars. The circular functions may be plotted similarly: 

   sin=: 1&o. 
   cos=: 2&o.  
   plot (cos;sin) 0.1*i:21 

The  resulting  (partial)  circle  (flattened  by  scaling)  suggests  that  the  following  sum  of 
squares should give the result 1 : 

   (*:@cos + *:@sin) i:10 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Finally, the derivative of cos is -@sin and sin d.1 is cos. 

Parity. If f -x equals f x for every value of x, then f is said to be even. Geometrically, 
this implies that the plot of f is reflected in the vertical axis. For example: 

 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  69 

   f=:^&2  
   x=:0 1 2 3 4 
   f x 
0 1 4 9 16 
   f -x 
0 1 4 9 16 
   plot f i:4 

If f -x equals -f x, then f is said to be odd, and its plot is reflected in the origin: 

   f=:^&3 
   f x 
0 1 8 27 64 
   f -x 
0 _1 _8 _27 _64 

    plot f i:3   

The adverbs: 

   EVEN=: .. - 
    ODD=: .: - 

give the even and odd parts of a function to which they are applied; that is, f EVEN is an 
even function, f ODD is odd, and their sum is equal to f. For example: 
   ^ x 
0.0497871 0.135335 0.367879 1 2.71828 7.38906 20.0855 

 
 
 
    
 
 
 
 
 
 
 
 
 
70  Calculus 

   ^ EVEN x 
10.0677 3.7622 1.54308 1 1.54308 3.7622 10.0677 

   ^ ODD x 
_10.0179 _3.62686 _1.1752 0 1.1752 3.62686 10.0179 

   (^EVEN x)+(^ODD x) 
0.0497871 0.135335 0.367879 1 2.71828 7.38906 20.0855 

Since the coefficients that define the hyperbolic and circular functions each have zeros in 
alternate positions, each is either odd or even. The following functions are all tautologies, 
that is, they yield 1 for any argument: 

   (sinh = sinh ODD) 

(sinh = ^ ODD) 

   (cosh = cosh EVEN) 

(cosh = ^ EVEN) 

   (sin = sin ODD) 

(cos = cos EVEN) 

B1  Repeat  Exercises  A2-A5  with  modifications  appropriate  to  the  circular  and 

hyperbolic functions. 

C. Proofs 

We will now use the definitions of the hyperbolic and circular functions to establish the 
two main conjectures of Section B: 

   (*:@cosh - *:@sinh)   is  1 

   (*:@cos + *:@sin)     is   1 

See Section K of Chapter 2 for justification of the steps in the proof: 

   (*:@cosh - *:@sinh) d.1  

   (*:@cosh d.1 - *:@sinh d.1) 

   ((*: d.1 @cosh*sinh)-(*: d.1 @sinh * cosh))  

   ((2"0 * cosh * sinh)-(2"0 * sinh * cosh))  

   (2"0 * ((cosh * sinh) - (sinh * cosh))) 

   0"0 

The circular case differs only in the values for the derivatives: 

   cos d.1    is   -@sin 

   sin d.1    is   cos 

C1  Write and test a proof of the fact that the sum of the squares of the functions 1&o. 

and 2&o. is 1. 

D. The Exponential Family 

We have now shown how the growth, decay, and hyperbolic functions can be expressed 
in terms of the single exponential function ^ : 

 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  71 

   ^ AM r 

   ^ EVEN 

   ^ ODD 

Growth at rate r 

Hyperbolic cosine 

Hyperbolic sine 

Complex numbers can be used to add the circular functions to the exponential family as 
follows: 

   ^@j. EVEN 

   ^@j. ODD 

For example: 

Cosine 

Sine multiplied by 0j1 

   ^@j. EVEN x=: 0 1 2 3 4 
1 0.540302 _0.416147 _0.989992 _0.653644 

   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 

   ^@j. ODD x 
0 0j0.841471 0j0.909297 0j0.14112 0j_0.756802 

   j. sin x 
0 0j0.841471 0j0.909297 0j0.14112 0j_0.756802 

   j.^:_1 ^@j. ODD x 
0 0.841471 0.909297 0.14112 _0.756802 

   ^ ODD &. j. x 
0 0.841471 0.909297 0.14112 _0.756802 

D1  Write and test tautologies involving cosh and sinh . 

[  t=: cosh = sinh@j. and u=: sinh = cosh@j. ] 

D2 

 Repeat D1 for cos and sin. 

E. Logarithm and Power 

The inverse of the exponential is called the logarithm, or natural logarithm. It is denoted 
by ^. ; some of its properties are shown below: 

   I=: ^:_1 

Inverse adverb 

   ^ I x=: 1 2 3 4 5 
0 0.693147 1.09861 1.38629 1.60944 

   ^ ^ I x 
1 2 3 4 5 

   ^. x 
0 0.693147 1.09861 1.38629 1.60944 

Natural log  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
72  Calculus 

   ^. d.1 x 
1 0.5 0.333333 0.25 0.2 
   % ^. d.1 x 
1 2 3 4 5 

   ^. x ^ b=: 3 
0 2.07944 3.29584 4.15888 4.82831 

   b * ^. x 
0 2.07944 3.29584 4.15888 4.82831 

The  dyadic  case  of  the  logarithm  ^.  is  defined  in  terms  of  the  monadic  as  illustrated 
below: 

   (^.x) % (^.b) 
0 0.63093 1 1.26186 1.46497 

   b ^. x 
0 0.63093 1 1.26186 1.46497 

   b %&^.~ x 
0 0.63093 1 1.26186 1.46497 

The dyadic case of ^ is the power function; it has, like other familiar dyads (including + 
- * %) been used without definition. We now define it in terms of the dyadic logarithm 
as illustrated below: 

(Where I=: ^:_1 is the inverse adverb) 

   b&^. I x 
3 9 27 81 243 

   b ^ x 

3 9 27 81 243 

This  definition  extends  the  domain  of  the  power  function  beyond  the  non-negative 
integer  right  arguments  embraced  in  the  definition  of  power  as  the  product  over 
repetitions of the left argument, as illustrated below: 

   m=: 1.5 
   n=: 4 
   n # m 
1.5 1.5 1.5 1.5 

   */ n # m 
5.0625 

   m^n 
5.0625 

Moreover, the extended definition retains the familiar properties of the simple definition. 
For example: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  73 

   5 ^ 4+3 
78125   
   (5^4)*(5^3) 
78125 

E1  Comment on the question of whether the equivalence of */n#m and m^n holds for 

the case n=:0. 

F. Trigonometric Functions 

Just as a five-sided (or five-angled) figure may be characterized either as pentagonal or 
pentangular, so may a three-sided figure be characterized as trigonal or triangular. The 
first of these words suggests the etymology of trigonometry, the measurement of three-
sided figures. This section concerns the equivalence of the functions sin and cos (that 
have  been  defined  only  by  differential  equations)  and  the  corresponding  trigonometric 
functions sine and cosine. 

The  sine  and  cosine  are  also  called  circular  functions,  because  they  can  be  defined  in 
terms of the coordinates of a point on a unit circle (with radius 1 and centre at the origin) 
as  functions  of  the  length  of  arc  to  the  point,  measured  counter-clockwise  from  the 
reference point with coordinates  1 0. As illustrated in Figure F1, the cosine of a is the 
horizontal (or x) coordinate of the point whose arc is a, and the sine of a is the vertical 
coordinate. 

The length of arc is also called the angle, and the ratio of the circumference of a circle to 
its  diameter  is  called  pi,  given  by  pi=:  o.  1,  or  by  the  constant  1p1.  The  circular 
functions therefore have the period 2p1, that is two pi. Moreover, the coordinates of the 
end points of arcs of lengths 1p1 and 0.5p1 are _1 0 and 0 1; the supplementary angle 
1p1&- a and the complementary angle 0.5p1&- a are found by moving clockwise from 
these points. 

    sin a 

               1                     a 

                    cos a 

Figure F1 

Taken together with these remarks, the properties of the circle make evident a number of 
useful  properties  of  the  sine  and  cosine.  We  will  illustrate  some  of  them  below  by 
tautologies, each of which can be tested by enclosing it in parentheses and applying it to 
an argument, as illustrated for the first of them: 

   S=: 1&o. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74  Calculus 

   C=: 2&o. 
   x=: 1 2 3 4 5 
 (1"0 = *:@S + *:@C) x 
1 1 1 1 1 

   S@- = -@S 

   S ODD = S 

   C@- = C 

Theorem of Pythagoras 

The sine is odd 

The cosine is even 

   S @ (2p1&+) = S 

The period of the sine is twice pi 

   C @ (2p1&+) = C 

The period of the cosine is twice pi 

   S @ (1p1&-) = S 

Supplementary angles 

       C @ (1p1&-) = -@C 

 " 

   S @ (0.5p1&-) = C 

Complementary angles 

   C @ (0.5p1&-) = S 

      " 

Sum Formulas. A function applied to a sum of arguments may be expressed equivalently 
in  terms  of  the  function  applied  to  the  individual  arguments;  the  resulting  relation  is 
called a sum formula: 

   a=: 2 3 5 7 
   b=: 4 3 2 1 
   +: a+b 
12 12 14 16 

   (+:a)+(+:b) 
12 12 14 16 

   *: a+b 
36 36 49 64 

   (*:a)+(+:a*b)+(*:b) 
36 36 49 64 

   ^ a+b 
403.429 403.429 1096.63 2980.96 

   (^a)*(^b) 
403.429 403.429 1096.63 2980.96 

Sum formulas may also be expressed as tautologies: 

   +:@+ = +:@[ + +:@] 
   a(+:@+ = +:@[ + +:@]) b 
1 1 1 1 

   *:@+ = *:@[ + +:@* + *:@] 
   ^@+ = ^@[ * ^@] 

 
 
 
 
 
 
 
 
 
 
 
 
The following sum formulas for the sine and cosine are well-known in trigonometry: 

Chapter 6  Properties of Functions  75 

   S@+ = (S@[ * C@]) + (C@[ * S@]) 

   S@- = (S@[ * C@]) - (C@[ * S@]) 

   C@+ = *&C - *&S 

   C@- = *&C + *&S 

Since  a  S@+  a  is  equivalent  to  (the  monadic)  S@+:,  we  may  obtain  the  following 
identities for the double angle: 

   S@+: = +:@(S * C) 

   C@+: = *:@C - *:@S 

The  theorem  of  Pythagoras  can  be  used  to  obtain  two  further  forms  of  the  identity  for 
C@+: : 

   C@+: = -.@+:@*:@S 

   C@+: = <:@+:@*:@C 

An identity for the sine of the half angle may be obtained as follows: 

   (C@+:@-: = 1"0 - +:@*:@S@-:) 

   (C = 1"0 - +:@*:@S@-:) 

   (+:@*:@S@-: = 1"0 - C) 

   (S@-: =&| (+:@*: I)@(1"0 - C)) 

   (S@-: =&| %:@-:@(1"0 - C)) 

The last two tautologies above compare magnitudes (=&|) because the square root yields 
only the positive of the two possible roots.  Similarly for the cosine:  

   (C@+:@-: = <:@+:@*:@C@-:) 

   (C = <:@+:@*:@C@-:) 

   (C@-: =&| %:@-:@>:@C) 

Tautologies may be re-expressed in terms of arguments i and x as illustrated below for 
S@+ and C@+: 

   i=:0.1 

   (S i+x) = ((S i)*(C x)) + ((C i)*(S x)) 

   (C i+x) = ((C i)*(C x)) - ((S i)*(S x)) 

Derivatives. Using the results of Section 2A, we may express the secant slope of the sine 
function at the points x and i+x as follows: 

 
 
 
 
 
 
 
 
 
 
 
76  Calculus 

   ((S i+x)-(S x))%i 

Using the sum formula for the sine we obtain the following equivalent expressions: 

   (((S i)*(C x)) + ((C i)*(S x)) - (S x))%i 

   (((S i)*(C x)) + (S x)*(<:C i))%i 

   (((S i)*(C x))%i) - (S x)*((1-C i)%i) 

   ((C x)*((S i)%i)) - (S x)*((1-C i)%i) 

To obtain the derivative of S from this secant slope, it will be necessary to obtain limiting 
values of the ratios (S i)%i and (1-C i)%i. 

In  the  unit  circle  of  Figure  F2,  the  magnitude  of  the  area  of  the  sector  with  arc  length 
(angle in radians) i lies between the areas of the triangles OSC and OST. Moreover, the 
lengths of the relevant sides are as shown below: 

OC 

C i 

 CS 

S i 

OS 

1 

ST 

(S%C) i 

 S 

                                     i 

              O        C                                        T      

         Figure F2 

ST is the tangent to the circle, and its length is called the tangent of i. Its value (S%C) i 
follows from the ratios in the similar triangles. 

The  values  of  the  cited  areas  are  therefore  -:@(S*C)  i  and  -:@i and  -:@(S%C)  i . 
Multiplying by 2 and dividing by S i gives the relative sizes C i and i%S i and %C i . 
Hence,  the  ratio  i%S  i  lies  between  C  i  and  %C  i,  both  of  which  are  1  if  i=:  0. 
Finally, the desired limiting ratio (S i)%i is the reciprocal, also 1.  

The limiting value of (1-C i)%i is given by the identity +:@*:@S@-: =  1"0-C, for 
: 

   (1-C i)% i 

   (+: *: S i%2) % i  

   (*: S i%2) % (i%2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
Chapter 6  Properties of Functions  77 

   ((S i%2)%(i%2)) * (S i%2) 

The limit of the first factor has been shown to be 1, and the limit of S i%2 is 0; hence the 
limit of (1-C i)%i is their product, that is, 0. 

Substituting  these  limiting  values  in  the  expression  for  the  secant  slope  ((C  x)*((S 
i)%i))  -  (S  x)*((1-C  i)%i)  we  obtain  the  expression  for  the  derivative  of  the 
sine, namely: 

   ((C x)*(1)) - (S x)*(0) 
   C x 

Similar  analysis  shows  that  the  derivative  of  C  is  -@S,  and  we  see  that  the  relations 
between  S and  C and their derivatives are the same as those between  sin and  cos and 
their  derivatives.  Moreover,  the  values  of  S  and  sin  and  of  C  and  cos  agree  at  the 
argument 0. 

F1  Define f=:sin@(+/) = perm@:sc and sc=:1 2&o."0 and perm=: +/ . * 
and sin=:1&o.and cos=:2&o.; then evaluate f a,b for various scalar values of 
a and b and comment on the results. 
[  f is a tautology recognizable  as 
(sin(a+b))=((sin a)*(cos b))+((cos a)*(sin b))] 

F2  Define other tautologies known from trigonometry in the form used in F1.  

 [   Consider the use of det=: -/ . *  ] 

G. Dot and Cross Products 

As  illustrated  in  Section  3E,  the  vector  derivative  of  the  function  */\  yields  a  matrix 
result; the vectors in this matrix lie in a plane, and the vector perpendicular or normal to 
this plane is an important derivative called the curl of the vector function. We will now 
present a number of results needed in its definition, including the dot or scalar product 
and the cross or vector product. 

The angle between two rays from the origin is defined as the length of arc between their 
intersections  with  a  circle  of  unit  radius  centred  at  the  origin.  The  angle  between  two 
vectors is defined analogously. For example, the angle between the vectors 3 3 and 0 2 
is  1r4p1  (that  is,  one-fourth  of  pi)  radians,  or  45  degrees.  If  the  angle  between  two 
vectors is 1r2p1 radians (90 degrees), they are said to be perpendicular or normal. 

Similar notions apply in three dimensions, and a vector r that is normal to each of two 
vectors p and q is said to be normal to the plane defined by them, in the sense that it is 
normal to every vector of the form (a*p)+(b*q), where a and b are scalars. 

The  remainder  of  this  section  defines  the  dot  and  cross  products,  and  illustrates  their 
properties.  Proofs  of  these  properties  may  be  found  in  high-school  level  texts  as,  for 
example,  in  Sections  6.7,  6.8,  and  6.12  of  Coleman  et  al  [11].  Again  we  will  leave 
interpretations to the reader, and will defer comment on them to exercises. 

The  dot  product  may  be  defined  by  +/@*  or,  somewhat  more  generally,  by 
+/ . * . Thus: 

   a=: 1 2 3 
   +/a*b 
16 

[ 

b=: 4 3 2 

 
 
 
 
 
78  Calculus 

   dot=: +/ . * 

   a dot b 
16 

   dot~ a 
14 

   L=: %:@(dot~)"1 
   a,:b 
1 2 3 
4 3 2 

   L a,:b 
3.74166 5.38516 

   */ L a,:b 
20.1494 

   (a dot b) % */L a,:b 
0.794067 

   cos=:dot % */@(L@,:)   
   a cos b 
0.794067 

   0 0 1 cos 0 1 0 
0 

   0 0 1 cos 0 1 1 
0.707107 

   2 o. 1r4p1 
0.707107 

The product of the cosine of the angle between a 
and b with the product of their lengths 

Squared length of a 

Length function 

Product of lengths 

Re-definition of cos (not of 2&o.) 

Perpendicular or normal vectors 

Cosine of 45 degrees 

The following expressions lead to a definition of the cross product and to a definition of 
the sine of the angle between two vectors: 

Rotation of vectors 

   rot=: |."0 1 
   1 _1 rot a 
2 3 1 
3 1 2 

   (1 _1 rot a) * (_1 1 rot b) 
4 12 3 
9  2 8 

   ]c=:-/(1 _1 rot a)*(_1 1 rot b)  Cross product 
_5 10 _5 

   a dot c 
0   
   b dot c 
0    

The vectors are each normal to  
  their cross product 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  79 

   cross=: -/@(1 _1&rot@[ * _1 1&rot@]) 
   a cross b 
_5 10 _5 

   (a,:b) dot a cross b  
0 0 

   b cross a 
5 _10 5 

   L a cross b 
12.2474 

The cross product is not commutative 

The product of the sine of the angle between  
the vectors with the product of their lengths 

   (L a cross b) % */ L a,:b  The sine of the angle 
0.607831 

   sin=: L@cross % */@(L@,:)   The sine function 
   a sin b 
0.607831 

   a +/@:*:@(sin , cos) b 
1 

The following expressions suggest interpretations of the dot and cross products that will 
be pursued in exercises: 

   c=: 4 1 2 
   c dot a cross b 
_20 

m=: c,a,:b 
m 

4 1 2 
1 2 3 
4 3 2 

-/ . * m 

_20 

G1  Experiment with the dot and cross products, beginning with vectors in 2-space (that 
is  with  two  elements)  for  which  the  results  are  obvious.  Continue  with  other 
vectors in 2-space and in 3-space. Sketch the rays defined by the vectors, showing 
their intersection with the unit circle (or sphere). 

H. Normals 

We now use the function e introduced in Section 3E to define a function norm that is a 
generalization of the cross product; it applies to arrays other than vectors, and produces a 
result that is normal to its argument. Moreover, when applied to skew arrays of odd order 
(having an odd number of items) it is self-inverse. Thus: 

   indices=:{@(] # <@i.)    
   e=:C.!.2@>@indices   Result is called an "e-system" by McConnell [4]  

A skew matrix 

   ]skm=: *: .: |: i. 3 3 
 0 _4 _16 
 4  0 _12 
16 12   0 

   ]v=: -: +/ +/ skm * e #skm 
_12 16 _4 

 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
80  Calculus 

   v +/ . * skm 
0 0 0 

Test of orthogonality 

Inverse transformation 

   +/ v * e #v 
 0 _4 _16 
 4  0 _12 
16 12   0 
   norm=: +/^:(]`(#@$)`(* e@#)) % !@(#-#@$) 
   ]m=: (a=: 1 2 3) */ (b=: 4 3 2) 
 4 3 2 
 8 6 4 
12 9 6 

   n=: norm ^: 
   0 n m 
 4 3 2 
 8 6 4 
12 9 6 

   1 n m 
_5 10 _5 

   a cross b 
_5 10 _5 

   2 n m 
  0 _2.5   _5 
2.5    0 _2.5 
  5  2.5    0 
   3 n m 
_5 10 _5 

   1 n a 
   0  1.5  _1 
_1.5    0 0.5 
   1 _0.5   0 

   2 n a 
1 2 3 

   mp=: +/ . * 
   a mp 1 n a*/b 
0 

   b mp 1 n a*/b 
0 

   x=: 1 2 
   1 n x 
_2 1 

   x mp 1 n x 
0 

   2 n x 
_1 _2 

An adverb for powers of norm 

Skew part of m 

Self-inverse for odd dimension 

For even orders 2 n is inverse  
only up to sign change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 6  Properties of Functions  81 

Alternative definition of cross product 

   4 n x 
1 2 

   2 n y=: 1 2 3 4 
_1 _2 _3 _4 

   4 n y 
1 2 3 4 

2 n 1 2 3 4 5 

1 2 3 4 5 

   cr=: norm@(*/) 
   a cr b 
_5 10 _5 

   a cross b 
_5 10 _5 

H1  Experiment with the expressions of this section. 
H2  Using the display of e 3 shown in Section 3E, and using a0, a1, and a2 to denote 
the elements of a vector a in 3-space, show in detail that norm(*/) is indeed an 
alternative definition of the cross product. 

H3  Show  in  detail  that  +/@,@(e@#  *  *//)  is  an  alternative  definition  of  the 

determinant. 

 
 
 
 
 
 
 
 
83 

Chapter 
7 

Interpretations and Applications 

A. Introduction 

As remarked in Section 3A, various interpretations of a particular function definition are 
possible (as in vol=: */ and cost=: */), and any one of them may be either helpful 
or confusing, depending upon the background of the reader. A helpful interpretation may 
also  be  misleading,  either  by  suggesting  too  little  or  too  much.  We  will  illustrate  this 
point by three examples. 

Example 1. The sentences: 

   S=: 2 : '%&x. @ (] -&y. -&x.)' 
   f=: ^ 
   h=: 1e_8 
   sf=: h S f 
   sf x=: 1 
2.71828 

define and use the function sf. Moreover, sf can be helpfully interpreted as the secant 
slope of the exponential with spacing h, and (because h is small) as an approximation to 
the tangent slope of the exponential.  

However,  for  the  case  of  the  discontinuous  integer  part    function  <.  this interpretation 
would be misleading because its "tangent slope" at the point 1 is infinite. Thus: 

   h S <. x 
1e8 

Example 2. If the spacing h is complex, the function h S ^ has the behaviour expected 
of a secant slope: 

   ^ y=: 2j3 
_7.31511j1.04274 

   h=: 1e_6j1e_8 
   h S ^ y 

 
 
 
 
 
 
 
84  Calculus 

_7.31511j1.04274 

   (r=: 1e_6j0) S ^ y 
_7.31511j1.04274 

   (i=: 0j1e_8) S ^ y 
_7.31511j1.04274 

Again the interpretation of the function h S f as an approximation to the tangent slope 
is valid. However, the (continuous) conjugate function + shows unusual behaviour: 

   h S + y 
0.9998j_0.019998 

r S + y 

i S + y 

1 

_1 

The problem arises because the conjugate is not an analytic function. A clear and simple 
discussion of this matter may be found in Churchill [12]. 

Example 3. 

Section 2D interprets the integral of a function f as a function that gives the area under 
the  graph  of  f  from  a  point  a  (that  is,  the  point  a,f  a  on the graph of  f) to a second 
point  b.  This  interpretation  is  helpful  for  real-valued  functions,  but  how  should  we 
visualize the area under a function that gives a complex result? 

It  is,  of  course,  possible  to  interpret  the  integral  as  a  complex  result  whose  real  and 
imaginary  parts  are  the  areas  under  the  real  and  imaginary  parts  of  f,  respectively. 
However, the beginning and end points may themselves be complex, and although there 
is a clearly defined "path" through real numbers between a pair of real numbers a and b, 
there  are  an  infinity  of  different  paths  through  complex  numbers  from  complex  a  to 
complex b. 

This observation leads to the more difficult, but highly useful, notion of integration along 
a  prescribed  path  (called  a  line  or  contour  integral),  a  notion  not  hinted  at  by  the 
interpretation of integration as the area under a curve.  

B. Applications and Word Problems 

What we have treated as interpretations of functions may also be viewed as applications 
of math, or as word problems in math. For example, if cos=:2&o. and sin=:1&o., then 
the function: 

  f=:0.1&path=:(cos,sin)@*"0 

may  be interpreted as the β€œPosition of a car ... moving on a circular path at an angular 
velocity  of  0.1  radians  per  second”.  Conversely,  the  expression  in  quotes  could  be 
considered  as  an  application  of  the  circular  functions,  and  could  be  posed  as  a  word 
problem requiring as its solution a definition of the function f. 

Similarly, the phrase f D.1 may be interpreted as the velocity of the car whose position 
is  prescribed  by  f.  Because  the  phrase  involved  a  derivative,  the  corresponding  word 
problem would be considered as an application of the calculus. 

  
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   85 

Just as a reader’s background will determine whether a given interpretation is helpful or 
harmful in grasping new concepts in the calculus, so will it determine the utility of word 
problems.  We  will  limit  our  treatment  of  interpretations  and  applications  to  a  few 
examples,  and  encourage  the  reader  to  choose  further  applications  from  any  field  of 
interest, or from other calculus texts. 

C. Extrema and Inflection Points 

If f=: (c=: 0 1 2.5 _2 0.25)&p., then p. is a polynomial in terms of coefficients, 
and f is a specific polynomial whose (tightly) formatted results: 

   (fmt=: 5.1&":) f x=: 0.1*>:i.6 10 
  0.1  0.3  0.5  0.7  0.9  1.1  1.3  1.5  1.6  1.8 
  1.8  1.9  1.8  1.8  1.6  1.4  1.2  0.9  0.5  0.0 
 _0.5 _1.1 _1.8 _2.6 _3.4 _4.2 _5.2 _6.1 _7.2 _8.2 
 _9.4_10.5_11.7_12.9_14.1_15.3_16.5_17.7_18.9_20.0 
_21.1_22.1_23.0_23.9_24.6_25.2_25.7_26.1_26.3_26.2 
_26.0_25.6_25.0_24.1_22.9_21.4_19.6_17.4_14.9_12.0 

suggest  that  it  has  a  (local)  maximum  (of  1.9)  near  1.2  and  a  minimum  near  4.9. 
Moreover, a graph of the function over the interval from 0 to 4 shows their location more 
precisely. 

A graph of the derivative  f d.1 over the same interval illustrates the obvious fact that 
the derivative is zero at an extremum (minimum or maximum): 

    fmt f d.1 x 
  1.4  1.8  2.0  2.1  2.1  2.1  1.9  1.7  1.4  1.0 
  0.6  0.1 _0.4 _1.0 _1.6 _2.3 _2.9 _3.6 _4.3 _5.0 
 _5.7 _6.4 _7.1 _7.7 _8.4 _9.0 _9.6_10.1_10.6_11.0 
_11.4_11.7_11.9_12.1_12.1_12.1_12.0_11.8_11.4_11.0 
_10.4 _9.8 _8.9 _8.0 _6.9 _5.6 _4.2 _2.6 _0.9  1.0 
  3.1  5.4  7.8 10.5 13.4 16.5 19.8 23.3 27.0 31.0 

We  may  therefore  determine  the  location  of  an  extremum  by  determining  the  roots 
(arguments  where  the  function  value  is  zero)  of  the  derivative  function.  Since  we  are 
concerned only with real roots we will define a simple adverb for determining the value 
of a root in a specified interval, where the function values at the ends of the interval must 
differ in sign. The method used is sometimes called the bisection method; the interval is 
repeatedly halved in length by using the midpoint (that is, the mean) together with that 
endpoint for which the function value differs in sign. Thus: 

   m=: +/ % # 
   bis=: 1 : '2&{.@(m , ] #~ m ~:&(*@x.) ])' 
   f y=: 1 4 
1.75 _20 

Interval that bounds a root of f 

   f bis y 
2.5 1 

One step of the bisection method 

  
 
 
 
 
 
 
 
 
86  Calculus 

   f f bis y 
_3.35938 1.75 

   f bis^:0 1 2 3 4 y 
     1     4 
   2.5     1 
  1.75   2.5 
 2.125  1.75 
1.9375 2.125 

   f bis^:_ y 
2 2 

Resulting interval still bounds a root 

Successive bisections  

Limit of bisection 

   ]root=: m f bis^:_ y 
2 

Root is mean of final interval 

   f root 
_3.55271e_14 

A root of the derivative of f identifies an extremum of f: 

   f d.1 z=: 0.5 1.5 
2.125 _1.625 

   ]droot=: m f d.1 bis^:_ z 
1.21718 

   f d.1 droot 
_9.52571e_14 

When the derivative of f is increasing, the graph of f bends upward; when the derivative 
is decreasing, it bends downward. At a maximum (or minimum) point of the derivative, 
the  graph  of  f  therefore  changes  its  curvature,  and  the  graph  crosses  its  own  tangent. 
Such a point is called a point of inflection. 

Since an extremum of the derivative occurs at a zero of its derivative, an inflection point 
of f occurs at a zero of f d.2 . Thus: 

     fmt f d.2 x 
  3.8  2.7  1.7  0.7 _0.3 _1.1 _1.9 _2.7 _3.4 _4.0 
 _4.6 _5.1 _5.5 _5.9 _6.3 _6.5 _6.7 _6.9 _7.0 _7.0 
 _7.0 _6.9 _6.7 _6.5 _6.2 _5.9 _5.5 _5.1 _4.6 _4.0 
 _3.4 _2.7 _1.9 _1.1 _0.2  0.7  1.7  2.7  3.8  5.0 
  6.2  7.5  8.9 10.3 11.8 13.3 14.9 16.5 18.2 20.0 
 21.8 23.7 25.7 27.7 29.8 31.9 34.1 36.3 38.6 41.0 

   * f (d.2) 0 1 
1 _1 

   ]infl=: m f d.2 bis^:_ (0 1) 
0.472475 

   f d.2 infl 
_6.83897e_14 

A graph of f will show that the curve crosses its tangent at the point infl. 

  
 
 
 
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   87 

C1  Test the assertion that droot is a local minimum of f . 

[  f droot + _0.0001 0 0.0001   

It is not a minimum, but a maximum. ] 

C2  What is the purpose of 2&{.@ in the definition of bis?  

[     Remove the phrase and try f bis 1 3     ] 

C3  For  various  coefficients  c,  make  tables  or  graphs  of  the  derivative  c&p.  D  to 
determine intervals bounding roots, and use them with bis to determine extrema of 
the polynomial c&p. 

D. Newton's Method 

Although the bisection method is certain to converge to a root when applied to an interval 
for which the function values at the endpoints differ in sign, this convergence is normally 
very  slow.  The  derivative  of  the  function  can  be  used  in  a  method  that  normally 
converges  much  faster,  although  convergence  is  assured  only  if  the  initial  guess  is 
"sufficiently near" the root.  

The function g=: (]-1:)*(]-2:) has roots at 1 and 2, as shown by its graph: 

   plot y;g y=: 1r20*i.60 

Draw a tangent at the point  x,g  x=:  3 intersecting the axis at a point  nx,0 and note 
that nx is a much better approximation to the nearby root at 2 than is x. The length x-nx 
is  the  run  that  produces  the  rise  g  x  with  the  slope  g  d.1  x.  As  a  consequence, 
nx=:x-(g x) % (g d.1 x) is a better approximation to the root at 2. Thus: 

   x=:3 
   g=: (]-1:)*(]-2:) 
   g x 
2 
   ]nx=:x-(g x) % (g d.1 x) 
2.33333 
   g nx 
0.444444 
A  root  can  be  determined  by  repeated  application of this process, using an adverb  N as 
follows: 

   N=:(1 : '] - x. % x. d.1') (^:_) 
   f=: (c=: 0 1 2.5 _2 0.25)&p.       

Used in Section C 

  
 
    
   
  
 
 
88  Calculus 

   f N 6 
6.31662 

   f f N 6 
7.01286e_16 

Test if f N 6 is a root of f  

   f N x=: i. 7        
0 _0.316625 2 2 2 6.31662 6.31662 

Different starts converge  
to different roots 

   f f N x 
0 0 0 0 0 7.01286e_16 7.01286e_16 

This use of the derivative to find a root is called Newton's method. Although it converges 
rapidly  near  a  single  root,  the  method  may  not  converge  to  the  root  nearest  the  initial 
guess, and may not converge at all. The initial guess droot determined in the preceding 
section  as  a  maximum  point  of  f  illustrates  the  matter;  the  derivative  at  the  point  is 
approximately 0, and division by it yields a very large value as the next guess: 

   f N droot 
6.31662 

Since the derivative of a polynomial function  c&p. can be computed directly using the 
coefficients  }.c*i.#c,  it  is  possible  to  define  a  version  of  Newton's  method  that  does 
not make explicit use of the derivative adverb. Thus: 

   dc=: 1 : '}.@(] * i.@#)@(x."_) p. ]' ("0) 
   NP=: 1 : '] - x.&p. % x. dc' ("0)(^:_) 
   c NP x 
0 _0.316625 2 2 2 6.31662 6.31662 

   c&p. N x 
0 _0.316625 2 2 2 6.31662 6.31662 

The  following  utilities  are  convenient  for  experimenting  with  polynomials  and  their 
roots: 

   pir=:<@[ p. ] 
   _1 _1 _1 pir x 
1 8 27 64 125 216 343 

   1 3 3 1 p. x 
1 8 27 64 125 216 343 

   pp=: +//.@(*/) 
   1 2 1 pp 1 3 3 1 
1 5 10 10 5 1 

   (1 2 1 pp 1 3 3 1) p. x 
1 32 243 1024 3125 7776 16807 
   (1 2 1 p. x) * (1 3 3 1 p. x) 
1 32 243 1024 3125 7776 16807 

Polynomial in terms of roots 

Polynomial product 

   cfr=: pp/@(- ,. 1:) 
   cfr _1 _1 _1 

Coefficients from roots 

  
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   89 

1 3 3 1 

D1  Use  Newton's  method  to  determine  the  roots  for  which  the  bisection  method  was 

used in Section C. 

E. Kerner's Method 

Kerner's method for the roots of a polynomial is a generalization of Newton's method; at 
each  step  it  treats  an  n-element  list  as an approximation to all of the  <:#c roots of the 
polynomial  c&p., and produces an "improved" approximation. We will first define and 
illustrate  the  use  of  an  adverb  K  such  that  c  K  b  yields  the  <:#c  (or  #b)  roots  of  the 
polynomial with coefficients c: 

   k=: 1 : ']-x.&p. % (<0 1)&|:@((1&(*/\."1))@(-/~))' 
   K=: k (^:_) 
   b=: 1 2 3 4 
   ]c=: cfr b+0.5 
59.0625 _93 51.5 _12 1 

Coefficients of polynomial 
with roots at b+0.5 

   c k b 
2.09375 2.46875 3.28125 4.15625 

Single step of Kerner 

   c K b 
1.5 2.5 3.5 4.5 

   c k ^: (i.7) b 
      1       2       3       4 
2.09375 2.46875 3.28125 4.15625 
1.20508 2.59209  3.7207 4.48213 
1.45763 2.53321 3.50503 4.50413 
1.49854 2.50154 3.49996 4.49997 
    1.5     2.5     3.5     4.5 
    1.5     2.5     3.5     4.5 

   ]rb=: 4?.20 
17 4 9 7 

   c K rb 
1.5 3.5 4.5 2.5 

Limit of Kerner 
Roots of c&p. 

Six steps of Kerner 

Random starting value 

The adverb K applies only to a normalized coefficient c, that is, one whose last non-zero 
element (for the highest order term) is 1. Thus: 

   norm=:(] % {:)@(>./\.@:|@:* # ]) 
   norm 1 2 0 3 4 0 0 
0.25 0.5 0 0.75 1 

The polynomials c&p. and (norm c)&p. have the same roots, and norm c is a suitable 
argument to the adverb K. 

Kerner's method applies to polynomials with complex roots; however it will not converge 
to  complex  roots  if  the  beginning  guess  is  completely  real:  begin  provides  a  suitable 
beginning argument: 

  
 
 
 
 
 
 
 
 
 
 
90  Calculus 

   (begin=: %:@-@i.@<:@#) 1 3 3 1 
0 0j1 0j1.41421  

For example, the coefficients d=: cfr 1 2 2j3 4 2j_4 define a polynomial with two 
complex roots. Thus: 

   d=: cfr 1 2 2j3 4 2j_4 
   ]roots=: (norm d) K begin d 
4 2j3 2j_4 2 1 

   /:~roots  
1 2j3 2j_4 2 4 

Sorted roots 

The  definition  of  the  adverb  k  (for  a  single  step  of  Kerner)  can  be  revised  to  give  an 
alternative  equivalent  adverb  by  replacing the division (%) by matrix division (%.), and 
removing the phrase  (<0  1)&|:@ that extracts the diagonal of the matrix produced by 
the subsequent phrase. Thus: 

   ak=: 1 : ']-x.&p. %. ((1&(*/\."1))@(-/~))' 
   c ak b 
2.09375 2.46875 3.28125 4.15625 

In this form it is clear that the vector of residuals produced by x.&p. (the values of the 
function applied to the putative roots, which must all be reduced to zero) is divided by the 
matrix  produced  by  the  expression  to  the  right  of  %.  .  This  expression  produces  the 
vector derivative with respect to each of the approximate roots; like the analogous case of 
the  direct  calculation  of  the  derivative  in  the  adverb  NP  it  is  a  direct  calculation  of  the 
derivative  without  explicit  use  of  the  vector  derivative  adverb  VD=:  ("1)  (D.  1). 
These matters are left for exploration by the reader. 

E1  Find all roots of the functions used in Section C. 

E2  Define some polynomials that have complex roots, and use Kerner's method to find 

all roots. 

F. Determinant and Permanent 

The function -/ . * yields the determinant of a square matrix argument. For example: 

   det=: -/ . * 
   ]m=: >3 1 4;2 7 8;5 1 6 
3 1 4   
2 7 8 
5 1 6 

   det m    
_2 

The  determinant  is  a  function  of  rank  2  that  produces  a  rank  0  result;  its  derivative  is 
therefore a rank 2 function that produces a rank 2 result. For example:  

   MD=: ("2) (D.1) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   91 

   det MD m 
 34  28 _33 
 _2  _2   2 
_20 _16  19 

This  result  can  be  checked  by  examining  the  evaluation  of  the  determinant  as  the 
alternating sum of the elements of any one column, each weighted by the determinant of 
its  respective  complementary  minor,  the  matrix  occupying  the  remaining  rows  and 
columns;  the  derivative  with  respect  to  any  given  element  is  its  weighting  factor.  For 
example,  the  complementary  minor  of  the  leading  element  of  m  is  the  matrix  m00=:  7 
8,:1 6, whose determinant is 34, agreeing with the leading element of the derivative.  

Corresponding results can be obtained for the permanent, defined by the function +/ .*. 
For example: 

   (per=: +/ . *)  m 
350 
   per MD m 
50 52 37 
10 38  8 
36 32 23 

F1  Read the following sentences and try to state the meanings of the functions defined 
and  the  exact  results  they  produce.  Then  enter  the  expressions  (and  any  related 
expressions that you might find helpful) and again try to state their meanings and 
results. 

   alph=: 4 4$ 'abcdefghijklmnop' 

   m=: i. 4 4 

   box=: <"2 

   minors=: 1&(|:\.)"2 ^:2 

   box minors m 

   box minors alph 

   box^:2 minors^:2 alph 

[The  function  minors  produces  the  complementary  minors  of  its  argument;  the 
complementary minor of any element of a matrix is the matrix obtained by deleting 
the row and column in which the element lies.] 

F2  Enter and then comment upon the following sentences: 

   sqm=: *:m 

   det minors sqm 

   det D.1 sqm 

    (det D.1 sqm) % (det minors sqm) 

   ((+/ .*D.1)%+/ .*@minors)sqm  

  
 
 
 
 
 
92  Calculus 

G. Matrix Inverse 

The  matrix  inverse  is  a  rank  2  function  that  produces  a  rank  2  result;  its  derivative  is 
therefore a rank 2 function that produces a rank 4 result. For example: 

   m=: >3 1 4;2 7 8;5 1 6 
   MD=: ("2) (D. 1)  

   <"2 (7.1) ": (miv=: %.) MD m 
+---------------------+---------------------+---------------------+ 
| _289.0 _238.0  280.5|   17.0   17.0  _17.0|  170.0  136.0 _161.5| 
|   17.0   14.0  _16.5|   _1.0   _1.0    1.0|  _10.0   _8.0    9.5| 
|  170.0  140.0 _165.0|  _10.0  _10.0   10.0| _100.0  _80.0   95.0| 
+---------------------+---------------------+---------------------+ 
| _238.0 _196.0  231.0|   14.0   14.0  _14.0|  140.0  112.0 _133.0| 
|   17.0   14.0  _16.5|   _1.0   _1.0    1.0|  _10.0   _8.0    9.5| 
|  136.0  112.0 _132.0|   _8.0   _8.0    8.0|  _80.0  _64.0   76.0| 
+---------------------+---------------------+---------------------+ 
|  280.5  231.0 _272.2|  _16.5  _16.5   16.5| _165.0 _132.0  156.7| 
|  _17.0  _14.0   16.5|    1.0    1.0   _1.0|   10.0    8.0   _9.5| 
| _161.5 _133.0  156.8|    9.5    9.5   _9.5|   95.0   76.0  _90.3| 
+---------------------+---------------------+---------------------+ 

H. Linear Functions and Operators 

As  discussed  in  Section  1K,  a  linear  function  distributes  over  addition,  and  any  rank  1 
linear function can be represented in the form mp&m"1, where m is a matrix, and mp is the 
matrix product. For example: 

   r=: |."1 
   a=: 3 1 4 [ b=: 7 5 3 
   r a 
4 1 3 
   r b 
3 5 7 
   (r a)+(r b) 
7 6 10  
   r (a+b) 
7 6 10 

   mp=: +/ . *  
   ]m=: i. 3 3 
0 1 2 
3 4 5 
6 7 8 
   L=: m&mp 
   L a 
9 33 57 
   L b 
11 56 101 
   L a+b 
20 89 158 

Rank 1 reversal 

Reversal is linear. 

A linear function 

   VD=: ("1) (D. 1) 
   L VD a 

The derivative of a linear  

  
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   93 

function yields the matrix 
that represents it. 

An identity matrix 

A linear function applied to 
the identity matrix also yields 
the matrix that represents it. 

The matrix that represents the 
linear function reverse 

0 1 2   
3 4 5 
6 7 8 
   =/~a 
1 0 0 
0 1 0 
0 0 1 

   L =/~a 
0 1 2 
3 4 5 
6 7 8  

   r VD a 
0 0 1  
0 1 0  
1 0 0  

   r =/~a 
0 0 1 
0 1 0 
1 0 0 

   perm=: 2&A. 

A permutation is linear. 

   perm a 
1 3 4 

   perm VD a 
0 1 0 
1 0 0 
0 0 1 

A function such as (^&0 1 2)"0 can be considered as a family of component functions. 
For example: 

   F=: (^&0 1 2)"0 

   F 3 
1 3 9 

   F y=: 3 4 5 
1 3  9 
1 4 16 
1 5 25 

The function L@F provides weighted sums or linear combinations of the members of the 
family F, and the adverb L@ is called a linear operator. Thus: 

   L @ F y   
21  60  99   
36  99 162   
55 148 241 

   LO=: L@   
   F LO y 

The linear function F applied 
to the results of the family of 
functions F 

A linear operator 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94  Calculus 

21  60  99 
36  99 162 
55 148 241 

   C=: 2&o.@(*&0 1 2)"0 
   C y 
1 _0.989992   0.96017 
1 _0.653644   _0.1455 
1  0.283662 _0.839072 

Family of cosines (harmonics) 

   C LO y 
 0.930348    3.84088  6.75141 
_0.944644  _0.342075 0.260494 
 _1.39448 _0.0607089  1.27306 

A Fourier series 

H1  Enter and experiment with the expressions of this section.  

I. Linear Differential Equations 

If f=: 2&o. and: 
   F=: (f d.0)`(f d.1)`(f d.2) `:0 "0 
   L=: mp&c=: 1 0 1 

then  F  is  a  family  of  derivatives  of  f.  If  the  function  L@F  is  identically  zero,  then  the 
function f is said to be a solution of the linear differential equation defined by the linear 
function L. In the present example, f was chosen to be such a solution: 

   L@F y=: 0.1*i.4 
0 0 0 0 

The  solution  of  such  a  differential  equation  is  not  necessarily  unique;  in  the  present 
instance the sine function is also a solution: 

   f=: 1&o. 
   L@F y=: 0.1*i.4 
0 0 0 0 

In  general,  the  basic  solutions  of  a  linear  differential  equation  defined  by  the  linear 
function  L=:  mp&c  are  f=:  ^@(*&sr),  where  sr  is  any  one  root  of  the  polynomial 
c&p.. In the present instance: 
   f=: s=: ^@(*&0j1) 

   L@F y 
0 0 0 0 
c=: 1 0 1 
   c K begin c 
0j_1 0j1 

   f=: t=: ^@(*&0j_1) 
   L@F y 
0 0 0 0 

Roots of c&p. using Kerner’s method 

  
 
 
 
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   95 

Moreover,  any  linear  combination  of  the  basic  solutions  s  and  t  is  also  a  solution.  In 
particular, the following are solutions: 

   u=: (s+t)%2"0 

The cosine function 2&o. 

   v=: (s-t)%0j2"0  

The sine function 1&o. 

Since  u  is  equivalent  to  the  cosine  function,  this  agrees  with  the  solution  f  used  at  the 
outset. 

I1 

Enter  the  expressions  of  this  section,  and  experiment  with  similar  differential 
equations. 

J. Differential Geometry 

The differential geometry of curves and surfaces, as developed by Eisenhart in his book 
of  that  title  [13],  provides  interpretations  of  the  vector  calculus  that  should  prove 
understandable  to  anyone  with  an  elementary  knowledge  of  coordinate  geometry.  We 
will  provide  a  glimpse  of  his  development,  beginning  with  a  function  which  Eisenhart 
calls a circular helix. 

The following defines a circular helix in terms of an argument in degrees, with a rise of 4 
units per revolution: 

   CH=:(1&o.@(%&180p_1),2&o.@(%&180p_1),*&4r360)"0 
   CH 0 1 90 180 360 
           0        1         0 
   0.0174524 0.999848 0.0111111 
           1        0         1 
           0       _1         2 
_2.44921e_16        1         4 

   D=: ("0) (D. 1) 
   x=:0 1 2 3 4 

   CH D x 
0.0174533            0 0.0111111 
0.0174506 _0.000304602 0.0111111 
0.0174427 _0.000609111 0.0111111 
0.0174294 _0.000913435 0.0111111 
0.0174108  _0.00121748 0.0111111 
   CH D D x 
          0            0 0 
 _5.3163e_6 _0.000304571 0 
 _1.0631e_5 _0.000304432 0 
_1.59424e_5   _0.0003042 0 
 _2.1249e_5 _0.000303875 0 

The  derivatives  produced  by  CH  D  in  the  expression  above  are  the  directions  of  the 
tangents  to  the  helix;  their  derivatives  produced  by  CH  D  D  are  the  directions  of  the 
binormals.  The  binormal  is  perpendicular  to  the  tangent,  and  indeed  to  the  osculating 
(kissing) plane that touches the helix at the point given by CH. 

  
 
 
 
 
 
96  Calculus 

These  matters  may  be  made  more  concrete  by  drawing  the  helix  on  a  mailing  tube  or 
other  circular  cylinder.  An  accurate  rendering  of  a  helix  can  be  made  by  drawing  a 
sloping straight line on a sheet of paper and rolling it on the tube. A drawing to scale can 
be  made  by  marking  the  point  of  overlap  on  the  paper,  unrolling  it,  and  drawing  the 
straight line with a rise of 4 units and a run of the length of the circumference. Finally, 
the  use  of  a  sheet  of  transparent  plastic  will  make  visible  successive  laps  of  the  helix. 
Then proceed as follows: 

1.  Use  a  nail  or  knitting  needle  to  approximate  the  tangent  at  one  of  the  points 
where its directions have been computed, and compare with the computed results.  

2.  Puncture the tube to hold the needle in the direction of the binormal, and again 

compare with the computed results. 

3.  Puncture a thin sheet of flat cardboard and hang it on the binormal needle to 

approximate the osculating plane. 

4.  Hold a third needle in the direction of the principal normal, which lies in the 

osculating plane perpendicular to the tangent. 

To  compute  the  directions  of  the  principal  normal  we  must  determine  a  vector 
perpendicular to two other vectors. For this we can use the skew array used in Section 6I, 
or the following simpler vector product function:    

   vp=: (1&|.@[ * _1&|.@]) - (_1&|.@[ * 1&|.@]) 
   a=: 1 2 3 [ b=: 7 5 2 
   ]q=: a vp b 
_11 19 _9 

   a +/ . * q 
0   

b +/ . * q 

0 

Although we used degree arguments for the function CH we could have used radians, and 
it  is  clear  that  the  choice  of  the  argument  to  describe  a  curve  is  rather  arbitrary.  As 
Eisenhart  points  out,  it  is  possible  to  choose  an  argument  that  is  intrinsic  to  the  curve, 
namely  the  length  along  its  path.  In  the  case  of  the  helix  defined  by  CH,  it  is  easy  to 
determine  the  relation  between  the  path  length  and  the  degree  argument.  From  the 
foregoing  discussion  of  the  paper  tube  model  it  is  clear  that  the  length  of  the  helix 
corresponding  to  360  degrees  is the length of the hypotenuse of the triangle with sides 
360 and 4. Consequently the definition of a function dfl to give degrees from length is 
given by: 

   dfl=: %&((%: +/ *: 4 360) % 360) 

and the function CH@dfl defines the helix in terms of its own length. 

It is possible to modify the definition of the function CH to produce more complex curves, 
all of which can be modelled by a paper tube. For example: 

1.  Replace  the  constant  multiple  function  for  the  last  component  by  other 

functions, such as the square root, square, and exponential. 

2.  Multiply  the  functions  for  the  first  two  elements  by  constants  a  and  b 
respectively,  to  produce  a  helix  on  an  elliptical  cylinder.  This  can  be 

  
 
 
 
 
Chapter 7  Interpretations And Applications   97 

modelled by removing the cardboard core from the cylinder and flattening it 
somewhat to form an approximate ellipse. 

K. Approximate Integrals 

Section M of Chapter 2 developed a method for obtaining the integral or anti-derivative 
of a polynomial, and Section N outlined a method for approximating the integral of any 
function  by  summing  the  function  values  over  a  grid  of  points  to  approximate  the  area 
under the graph of the function. Better approximations to the integral can be obtained by 
weighting  the  function  values,  leading  to  methods  known  by  names  such  as  Simpson's 
Rule.  

We  will  here  develop  methods  for  producing  these  weights,  and  use  them  in  the 
definition of an adverb (to be called I) such that f I x yields the area under the graph of 
f from 0 to x.  

The fact that the derivative of f I equals f can be seen in Figure C1; since the difference 
(f I x+h)-(f I x)is approximately the area of the rectangle with base h and altitude 
f  x,  the  secant  slope  of  the  function  f  I  is  approximately  f.  Moreover,  the 
approximation approaches equality for small h. 

f

Figure C1 

   x 

x+h

Figure C1 can also be used to suggest a way of approximating the function AREA=: f I; 
if the area under the curve is broken into n rectangles each of width x%n, then the area is 
approximately  the  sum  of  the  areas  of  the  rectangles  with  the  common  base  h  and  the 
altitudes f h*i.n. For example: 

   h=: y % n=: 10 [ y=: 2 
   cube=: ^&3 
   cube h*i.n 
0 0.008 0.064 0.216 0.512 1 1.728 2.744 4.096 5.832 

  +/h*cube h*i.n 

   (4: %~ ^&4) y 

  
 
 
 
 
 
 
98  Calculus 

3.24   

  4 

The approximation can be improved by taking a larger number of points, but it can also 
be improved by using the areas of the trapezoids of altitudes f h*k and f h*k+1 (and 
including the point h*n). Since the area of each trapezoid is its base times the average of 
its altitudes, and since each altitude other than the first and last enter into two trapezoids, 
this  is  equivalent  to  multiplying  the  altitudes  by  the  weights  w=:  0.5,(1  #~  n-
1),0.5 . Thus: 

   ]w=: 0.5,(1 #~ n-1),0.5 
0.5 1 1 1 1 1 1 1 1 1 0.5 

   +/h*w*cube h*i. n+1 
4.04 

The  trapezoids  provide,  in  effect,  linear  approximations  to  the  function  between  grid 
points;  much  better  approximations  to  the  integral  can  be  obtained  by  using  groups  of 
1+2*k points, each group being fitted by a polynomial of degree 2*k. For example, the 
case k=: 1 provides fitting by a polynomial of degree 2 (a parabola) and a consequent 
weighting  of  3%~1  4  1  for  the  three  points.  If  the  function  to  be  fitted  is  itself  a 
polynomial of degree two or less, the integration produced is exact. For example: 

   w=: 3%~1 4 1 
   h=: (x=: 5)%(n=:2) 
   ]grid=: h*i. n+1 
0 2.5 5   
   f=: ^&2 
   w*f grid 
0 8.33333 8.33333 

   +/h*w* f grid 
41.6667 

   +/h*w* ^&4 grid 
651.042 

Exact integral of ^&2 

Exact result is 625 

Better approximations are given by several groups of three points, resulting in weights of 
the form 3%~1 4 2 4 2 4 2 4 1. For example, using g groups of 1+2*k points each: 

   n=: (g=: 4) * 2 * (k=: 1) 
   ]h=: n %~ x=: 5 
0.625 

   ]grid=: h*i. n+1 
0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5 
   1,(4 2 $~ <: 2*g),1 
1 4 2 4 2 4 2 4 1 

   w=: 3%~ 1,(4 2 $~ <: 2*g),1 
   +/h*w*^&2 grid 
41.6667 

625.102 

+/h*w*^&4 grid 

  
 
 
 
 
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   99 

This case of fitting by parabolas (k=:1) is commonly used for approximate integration, 
and is called Simpson's Rule. The weights 3%~1 4 1  used in Simpson's rule will now be 
derived by a general method that applies equally for higher values of k, that is, for any 
odd number of points. Elementary algebra can be used to determine the coefficients c of 
a polynomial of degree 2 that passes through any three points on the graph of a function 
f. The integral of this polynomial (that is, (0,c%1 2 3)&p.) can be used to determine 
the exact area under the parabola, and therefore the approximate area under the graph of 
f. 

The appropriate weights are given by the function W, whose definition is presented below, 
after some examples of its use: 

   W 1 
0.333333 1.33333 0.333333 

   W 2 
0.311111 1.42222 0.533333 1.42222 0.311111 

   3*W 1 
1 4 1 

45*W 2 

14 64 24 64 14 

The derivation of the definition of W is sketched below:  

   vm=: ^~/~@i=: i.@>:@+: 
   vm 2 
1 1  1  1   1 
0 1  2  3   4 
0 1  4  9  16 
0 1  8 27  64 
0 1 16 81 256 

(Transposed) 
Vandermonde of i. k  
(for k=: 1+2* n) 

   %. vm 2 
1 _2.08333  1.45833 _0.416667 0.0416667 
0        4 _4.33333       1.5 _0.166667 
0       _3     4.75        _2      0.25 
0  1.33333 _2.33333   1.16667 _0.166667 
0    _0.25 0.458333     _0.25 0.0416667 

Inverse of Vandermonde 

   integ=:(0:,.%.@(^~/~)%"1>:)@i     
   integ 2 
0 1 _1.04167  0.486111 _0.104167 0.00833333 
0 0        2  _1.44444     0.375 _0.0333333 
0 0     _1.5   1.58333      _0.5       0.05 
0 0 0.666667 _0.777778  0.291667 _0.0333333 
0 0   _0.125  0.152778   _0.0625 0.00833333 

Rows are integrals 
of rows of inverse Vm 

   W=: integ p. +:                
   3*W 1 
1 4 1 
The  results  produced  by  W  may  be  compared  with  those  derived  in  more  conventional 
notation,  as  in  Hildebrand  [7],  p  60  ff.  Finally,  we  apply  the  adverb  f.  to  fix  the 

Polynomial at double argument 

14 64 24 64 14 

45*W 2 

  
 
 
 
 
 
 
 
 
 
 
100  Calculus 

definition of W (by replacing each function used in its definition by itsdefinition in terms 
of primitives: 

   W f. 
(0: ,. %.@(^~/~) %"1 >:)@(i.@>:@+:) p. +: 

   W=:(0: ,. %.@(^~/~) %"1 >:)@(i.@>:@+:) p. +: 
   W 1 
0.333333 1.33333 0.333333 

A result of the function x: is said to be in extended precision, because a function applied 
to its result will be computed in extended precision, giving its results as rationals (as in 
1r3 for the result of 1%3). Thus: 

Factorial 20 to complete precision  

   ! x:20   
2432902008176640000 

   1 2 3 4 5 6 % x:3 
1r3 2r3 1 4r3 5r3 2 

   W x:1 
1r3 4r3 1r3 
   3*W x:1 
1 4 1 

   W x:3 
41r140 54r35 27r140 68r35 27r140 54r35 41r140 
   140*W x:3 
41 216 27 272 27 216 41 
We now define a function EW for extended weights, such that g EW k yields the weights 
for g groups of fits for 1+2*k points: 

   ew=:;@(#<) +/;.1~ 0: ~: #@] | 1: >. i.@(*#) 
   EW=: ew W 
   2 EW x:1 
1r3 4r3 2r3 4r3 1r3 

   3*2 EW x:1 
1 4 2 4 1 
   45*2 EW x:2 
14 64 24 64 28 64 24 64 14 

Finally, we define a conjunction ai such that w ai f x gives the approximate integral 
of the function f to the point x, using the weights w: 

   ai=: 2 : '+/@(x.&space * x.&[ * y.@(x.&grid))"0' 
      grid=: space * i.@#@[ 
         space=: ] % <:@#@[ 
   3*w=: 1 EW 1 
1 4 1 

   w ai *: x=: 1 2 3 4 
0.333333 2.66667 9 21.3333 

Weights for Simpson's rule (gives   
exact results for the square function) 

   (x^3)%3 

  
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
Chapter 7  Interpretations And Applications   101 

0.333333 2.66667 9 21.3333 

   (1 EW 2) ai (^&4) x 
0.2 6.4 48.6 204.8  

Weights give exact results for 
integral of  fourth power 

   (x^5)%5 
0.2 6.4 48.6 204.8 

   (cir=:0&o.)0 0.5 1  
1 0.866025 0 

   (2 EW 2) ai cir 1      
0.780924 

0&o. is %:@(1"0-*:) and cir  0.866025 
is the altitude of a unit circle 
Approximation to area under cir  
(area of quadrant) 

   4 * (2 EW 2) ai cir 1  
3.1237 

Approximation to pi 

   4*(20 EW 3) ai (0&o.) 1 
3.14132 

   o.1 
3.14159 

For use in exercises and in the treatment of interpretations in Section L, we will define 
the  adverb  I  in  terms  of    the  weights  4  EW  4,  that  is,  four  groups  of  a  polynomial 
approximation of order eight: 

   I=: (4 EW 4) ai 
   ^&9 I x=: 1 2 3 4 
0.0999966 102.397 5904.7 104854 
   (x^10) % 10 
0.1 102.4 5904.9 104858 
   ^&9 d._1 x 
0.1 102.4 5904.9 104858 

K1  Use the integral adverb I to determine the area under the square root function up to 

various points. 

K2  Since the graphs of the square and the square root intersect at 0 and 1, they enclose 

an area. Determine its size. 

[ (%:I-*:I) 1 or (%:-*:)I 1 ] 

K3  Experiment  with  the  expression  (f  -  f  I  D)  x  for  various  functions  f  and 

arguments x. 

L. Areas and Volumes  

The integral of a function may be interpreted as the area under its graph. To approximate 
integrals, we will use the adverb I defined in the preceding section. For example: 

   (0&o.) I 1 

Approximate area of quadrant of circle 

  
 
 
 
 
 
             
 
 
 
 
 
 
 
 
102  Calculus 

0.784908 
   4 * (0&o.) I 1 
3.13963 

Approximation to pi 

   *: I x=: 1 2 3 4 
0.333317 2.66654 8.99956 21.3323 
   (^&3 % 3"0) x 
0.333333 2.66667 9 21.3333   

The  foregoing  integral  of  the  square  function  can  be  interpreted  as  the  area  under  its 
graph. Alternatively, it can be interpreted as the volume of a three-dimensional solid as 
illustrated in Figure L1; that is, as the volume of a pyramid. In particular, the equivalent 
function ^&3 % 3"0 is a well-known expression for the volume of a pyramid. 

Similarly for a function that defines the area of a circle in terms of its radius: 

   ca=: o.@*:@] " 0 
   ca x 
3.14159 12.5664 28.2743 50.2655 
   ca I x 

1.04715 8.37717 28.273 67.0174 

  h*x 

  x

Figure L1 

By drawing a figure analogous to Figure L1, it may be seen that the cone whose volume 
is  determined  by  ca  I  can  be  generated  by  revolving  the  45-degree  line  through  the 
origin about the axis. The volume is therefore called a volume of revolution. 
Functions  other  than  ]  (the  45-degree  line)  can  be  used  to  generate  volumes  of 
revolution. For example: 

   cade=: ca@^@- 
   cade x 
0.425168 0.0575403 0.00778723 0.00105389 

Area of circle whose radius is 
the decaying exponential 

   cade I x 
1.3583 1.5423 1.56746 1.57123  

Volume of revolution of the 
decaying exponential 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Chapter 7  Interpretations And Applications   103 

Because the expression f I y applies the function f to points ranging from 0 to y, the 
area approximated is the area over the same interval from 0 to y. The area under f from a 
to b can be determined as a simple difference. For example: 

   f=: ^&3 
   f I b=: 4 
63.9965 

f I a=: 2 

3.99978 

   (f I b) -(f I a) 
59.9967 

-/f I b,a 

59.9967 

However,  this  approach  will  not  work  for  a  function  such  as  %,  whose  value  at  0  is 
infinite. In such a case we may use the related function %@(+&a), whose value at 0 is %a, 
and whose value at b-a is %b. Thus: 

   g=: %@(+&a) 
   g 0 
0.5 

g b-a 

0.25 

   g I b-a 
0.693163 

   ^. 2 
0.693147  

The integral of the reciprocal from 2 to 4 

The natural log of 2 

L1  Use integration to determine the areas and volumes of various geometrical figures, 

including cones and other volumes of revolution. 

M. Physical Experiments 

Simple experiments, or mere observation of everyday phenomena, can provide a host of 
problems for which simple application of the calculus provides solutions and significant 
insights.  The  reason  is  that  phenomena  are  commonly  governed  by  simple  relations 
between the functions that describe them, and their rates of change (that is, derivatives). 

For example, the position of a body as a function of time is related to its first derivative 
(velocity),  its  second  derivative  (acceleration),  and  its  third  derivative  (jerk).  More 
specifically, if p t gives the position at time t of a body suspended on a spring or rubber 
band, then the acceleration of the body (p  d.2) is proportional to the force exerted by 
the spring, which is itself a simple linear function of the position p. 

If  position  is  measured  from  the rest position (where the body rests after motion stops) 
this  linear  function  is  simply multiplication by a constant function  c determined by the 
elasticity  of  the  spring,  and  c*p  must  be  equal  and  opposite  to  m*p  d.2,  where  the 
constant function m is the mass of the body. In other words, (c*p)-(m*p d.2) must be 
zero. 

This  relation  can  be  simplified  to  0:  =  p  -  c2  *  p  d.2,  where  c2  is  the  constant 
function defined by c2=: m%c. The function p is therefore (as seen in Section I) the sine 
function,  or,  more  generally,  p=:  (a*sin)+(b*cos),  where  a  and  b  are  constant 
functions. 

  
 
 
 
 
 
 
 
104  Calculus 

This result is only an approximation, since a body oscillating in this manner will finally 
come  to  rest,  unlike  the  sine  and  cosine  functions  which  continue  with  undiminished 
amplitude.  The  difference  is  due  to  resistance  (from  friction  with  the  air  and  internal 
friction in the rubber band) which is approximately proportional to the velocity. In other 
words, the differential equation: 

       0: = (d*p)+(e*p D. 1)+(f*p D. 2) 

provides a more accurate relation. 

As  seen  in  Section  I,    a  solution  of  such  a  linear  differential  equation  is  given  by  ^@r, 
where  r  is  a  (usually  complex)  root  of  the  polynomial  (d,e,f)&p..  If  r=:  x+j.  y, 
then ^r may also be written as (^x)*(^j. y), showing that the position function is a 
product of a decay function (^x) and a periodic function (^j. y) like the solution to the 
simpler case in which the (resistance) constant e was zero. 

Because oscillations similar to those described above are such a familiar sight, most of us 
could  perform  the  corresponding  "thought  experiment"  and  so  avoid  the  effort  of  an 
actual experiment. However, the performance of actual experiments is salutary, because it 
commonly leads to the consideration of interesting related problems. 

For  example,  direct  observations  of  the  effect  of  greater  damping  can  result  from 
immersing  the  suspended  body  in  a  pail  of  water.  The  use  of  a  heavier  fluid  would 
increase  the  damping,  and  raise  the  following  question:  Could  the  body  be  completely 
damped, coming to rest with no oscillation whatever? 

The answer is that no value of the decay factor ^x could completely mask the oscillatory 
factor ^j. y. However, a positive value of the factor f (the coefficient of p d.2) will 
provide  real  roots  r,  resulting  in  non-oscillating  solutions  in  terms  of  the  hyperbolic 
functions  sinh    and  cosh.  Such a positive factor cannot, of course, be realized in the 
experiment described.  

The performance of actual experiments might also lead one to watch for other phenomena 
governed  by  differential  equations  of  the  same  form.  For  example,  if  the  function  q 
describes  the  quantity  of  electrical charge in a capacitor whose terminals are connected 
through  a  resistor  and  a  coil,  then  q  d.1  is  the  current  (whose  value  determines  the 
voltage drop across the resistor), and q d.2 is its rate of change (which determines the 
voltage  drop  across  the  coil).  In  other  words,  the  charge  q  satisfies  the  same  form  of 
differential  equation  that  describes  mechanical  vibrations,  and  enjoys  the  same  form  of 
electrical oscillation. 

Other systems concerning motion suggest themselves for actual or thought experiments: 

*  The voltage generated by a coil rotating in a magnetic field. 

*  The amount of water remaining in a can at a time t following the puncture of 

its bottom by a nail. 

*  The amount of electrical charge remaining in a capacitor draining through a 

resistor (used in circuits for introducing a time delay). 

Coordinate geometry also provides problems amenable to the calculus. For example, c=: 
(1&o.,2&o.)"0  is  a  rank  1  0  function  that  gives  the  coordinates  of  a  circle,  and  the 
gradient  c  D.  1  gives  the  slope  of  its  tangent.  Similarly,  e=:  (a*1&o.),(b*2&o.) 
gives the coordinates of an ellipse. 

  
 
 
Chapter 7  Interpretations And Applications   105 

If  we  are  indeed  surrounded  by  phenomena  so  clearly  and  simply  described  by  the 
calculus, why is it that so many students forced into calculus fail to see any point to the 
study? This is an important question, for which we will now essay some answers: 

1.  Emphasis  on  rigorous  analysis  of  limits  in  an  introductory  course  tends  to 
obscure  the  many  interesting  aspects  of  the  calculus  which  can  be  enjoyed 
and applied without it. 

2.  On the other hand, a superficial treatment that does not lead the student far 
enough  to  actually  produce  significant  new  results  is  likely  to  leave  her 
uninterested. Textbook pictures of suspension bridges with encouraging but 
unhelpful remarks that calculus can be used to analyze the form assumed by 
the cables, are more likely to discourage than stimulate a student. 

3.  The use of scalar notation makes it difficult to reach the interesting results of 

the vector calculus in an introductory course. 

4.  Although  the  brief  treatments  of  mechanical  and  electrical  vibrations  given 
here may provide significant insights into their solutions, they would prove 
unsatisfactory in a text devoted to physics: they ignore the matter of relating 
the  coefficients  in  the  differential  equations  to  the  actual  physical 
measurements (Does mass mean the same as weight? In what system of units 
are  they  expressed?);  they  ignore  questions  concerning  the  goodness  of  the 
approximation to the actual physical system; and they ignore the practicality 
of the computations required.  

The  treatment  of  such  matters,  although  essential  in  a  physics  text,  would 
make difficult its use by a student in some other discipline looking only for 
guidance in calculus. 

  
 
 
107 

Chapter 
8 

Analysis 

A. Introduction 

To  a  math  student  conversant  only  with  high-school  algebra  and  trigonometry,  the 
arguments used in Section 1E to determine the exact derivative of the cube (dividing the 
rise  in  the  function  value  by  the  run  r,  and  then  setting  r  to  zero  in  the  resulting 
expression) might appear not only persuasive but conclusive. Moreover, the fact that the 
derivative  so  determined  leads  to  consistent  and  powerful  results  would  only  tend  to 
confirm a faith in the validity of the arguments. 

On the other hand, a more mature student familiar with the use of rigorous axiomatic and 
deductive  methods  would,  like  Newton's  colleagues  at  the  time  of  his  development  of 
what  came  to  be  the  calculus,  have  serious  qualms  about  the  validity  of  assuming  a 
quantity r to be non-zero and then, at a convenient point in the argument, asserting it to 
be zero. 

Should a student interested primarily in the practical results of the calculus dismiss such 
qualms  as  pedantic  β€œlogic-chopping”,  or  are  there  important  lessons  to  be  learned  from 
the centuries-long effort to put the calculus on a β€œfirm” foundation? If so, what are they, 
and how may they be approached? 

The  important  lesson  is  to  appreciate  the  limitations  of  the  methods  employed,  and  to 
learn the techniques for assuring that they are being properly observed. As Morris Kline 
says in the preface to his Mathematics: The Loss of Certainty [14]: 

But intellectually oriented people must be fully aware of the powers of the tools at 
their disposal. Recognition of the limitations, as well as the capabilities, of reason is 
far more beneficial than blind trust, which can lead to false ideologies and even to 
destruction. 

Concerning β€œThis history of the illogical development  [of the calculus]  ...”, Kline states 
(page 167): 

But there is a deeper reason. A subtle change in the nature of mathematics had been 
unconsciously made by the masters. Up to about 1500, the concepts of mathematics 
were immediate realizations of or abstractions from experience. ... In other words, 
mathematicians were [now] contributing concepts rather than abstracting ideas from 
the real world. 

  
108  Calculus 

Chapter VII of Kline provides a brief and readable overview of ingenious attempts to put 
the calculus on a firm basis, and equally ingenious refutations. Students are urged to read 
it  in  full,  and  perhaps  to  supplement  it  with  Lakatos’  equally  readable  account  of  the 
interplay between proof and refutation in mathematics. In particular, a student should be 
aware of the fact that weird and difficult functions sometimes brought into presentations 
of the calculus are included primarily because of their historical role as refutations. The 
words of Poincare (quoted by Kline on page 194) are worth remembering:  

When  earlier,  new  functions  were  introduced,  the  purpose  was  to  apply  them. 
Today,  on  the  contrary,  one  constructs  functions  to  contradict  the  conclusions  of 
our predecessors and one will never be able to apply them for any other purpose. 

The central concept required to analyze derivatives is the limit; it is introduced in Section 
B, and applied to series in Section D. 

B. Limits  

The function  h=: (*: - 9"0) % (] - 3"0) applied to the argument a=: 3 yields 
the meaningless result of zero divided by zero. On the other hand, a list of arguments that 
differ  from  a  by  successively  smaller  amounts  appear  to  be  approaching  the  limiting 
value g=:6"0. Thus: 

   g=: 6"0   
   h=: (*:-9"0) % (]-3"0) 
   a=: 3 
   h a 
0  

  ]i=: ,(+,-)"0 (10^-i.5) 
1 _1 0.1 _0.1 0.01 _0.01 0.001 _0.001 0.0001 _0.0001 

   a+i 
4 2 3.1 2.9 3.01 2.99 3.001 2.999 3.0001 2.9999 

   h a+i 
7 5 6.1 5.9 6.01 5.99 6.001 5.999 6.0001 5.9999 

   |(g-h) a+i 
1 1 0.1 0.1 0.01 0.01 0.001 0.001 0.0001 0.0001 

We might therefore say that h x approaches a limiting value, or limit, as x approaches a, 
even though it differs from h a. In this case the limit is the constant function 6"0. 

We make a more precise definition of limit as follows: The function h has the limit  g at 
a  if  there  is  a  frame  function  fr  such  that  for  any  positive  value  of  e,  the  expression 
e>:|(g h) y is true for any y such that  (|y-a) <: a fr e. In other words, for any 
positive value e, however small, there is a value d=: a fr e such that h y differs from 
g y by no more than e, provided that y differs from a by no more than d. 

Figure  B1  provides  a  graphic  picture  of 
the  frame  function: 
d=: a fr e specifies the half-width of a frame such that the horizontal boundary lines 
at e and -e are not crossed by the graph of g-h within the frame. 

the  role  of 

  
 
 
 
 
 
 
As illustrated at the beginning of this section, the function g=: 6"0 is the apparent limit 
of  the  function    h=:  (*:-9"0)  %  (]-3"0)  at  the  point  a=:  3.  The  simple  frame 
function fr=: ] suffices, as illustrated (and later proved) below: 

Chapter 8  Analysis  109 

   e 

  0 

            0 

 a-d  

 a  

a+d 

                      Figure B1 
   fr=: ] 
   a=: 3 
   e=: 0.2 
   ]d=: a fr e 
0.2 

   ]i=: ,(+,-)"0,5%~>:i.5 
0.2 _0.2 0.4 _0.4 0.6 _0.6 0.8 _0.8 1 _1 

   ]j=: d*i 
0.04 _0.04 0.08 _0.08 0.12 _0.12 0.16 _0.16 0.2 _0.2 

   |(g-h) a+j 
0.04 0.04 0.08 0.08 0.12 0.12 0.16 0.16 0.2 0.2 

   e>:|(g-h) a+j 
1 1 1 1 1 1 1 1 1 1 

 We now offer a proof that fr=: ] suffices, by examining the difference function g-h in 
a series of simple algebraic steps as follows: 

Definitions of g and h 

   g-h 
   6"0 - (*:-9"0) % (]-3"0) 
   6"0 + (*:-9"0) % (3"0-]) 
   ((6"0*3"0-])+(*:-9"0))%(3"0-])   
   ((18"0-6"0*])+(*:-9"0))%(3"0-]) 
   ((9"0-6"0*])+*:)%(3"0-]) 
   ((3"0-])*(3"0-]))%(3"0-]) 
   3"0-] 
To recapitulate: for the limit point a=: 3 we require a frame function fr such that the 
magnitude of the difference (g-h) at the point a+a fr e shall not exceed e. We have 
just shown that the difference function (g-h) is equivalent to (3"0-]). Hence: 

Cancel terms, but the domain now excludes 3 

   |(g-h) a + a fr e 

  
 
 
 
                                    
 
 
 
 
 
 
 
 
 
110  Calculus 

   |(3"0-]) 3+3 fr e 
   |3-(3+3 fr e) 
   |-3 fr e 
   |3 fr e 
Consequently, the simple function fr=: ] will suffice. 

Definition of (g-h) and limit point 

In the preceding example, the limiting function was a constant. We will now examine a 
more general case of the limit of the secant slope (that is, the derivative) of the fourth-
power function. Thus: 

   f=: ^&4 
   h=: [ %~ ] -&f -~ 
   x=: 0 1 2 3 4 
   ]a=: 10^->:i. 6 
0.1 0.01 0.001 0.0001 1e_5 1e_6 

   a h"0/ x 
_0.001   3.439  29.679 102.719 246.559 
 _1e_6  3.9404 31.7608 107.461 255.042 
 _1e_9   3.994  31.976 107.946 255.904 
_1e_12  3.9994 31.9976 107.995  255.99 
_1e_15 3.99994 31.9998 107.999 255.999 
_1e_18 3.99999      32     108     256 

The last row of the foregoing result suggests the function 4"0*^&3 as the limit. Thus: 

   g=: 4:*^&3 
   g x 
0 4 32 108 256 

   a=: 1e_6 
   (g-a&h) x 
1e_18 5.99986e_6 2.4003e_5 5.39897e_5 9.59728e_5 

In simplifying the expression for the difference (g-a&h) x we will use functions for the 
polynomial and for weighted binomial coefficients as illustrated below: 

   w=: (]^i.@-@>:@[) * i.@>:@[ ! [ 
   x=: 0 1 2 3 4 5 
   a=: 0.1 
   (x-a)^4 
0.0001 0.6561 13.0321 70.7281 231.344 576.48 

   (4 w -a) p. x 
0.0001 0.6561 13.0321 70.7281 231.344 576.48 
   4 w -a 
0.0001 _0.004 0.06 _0.4 1 

The following expressions for the difference can each be entered so that their results may 
be compared: 

   (g-a&h) x 

   (4*x^3)-a %~ (f x) - (f x-a) 

  
 
 
 
 
 
 
 
Chapter 8  Analysis  111 

   (4*x^3)-a %~ (x^4) - (x-a)^4     

   (0 0 0 4 0 p. x)-a%~(0 0 0 0 1 p. x)-(4 w -a)p. x 

   a%~((a*0 0 0 4 0)p.x)-(0 0 0 0 1 p.x)-(4 w -a)p.x 

   a%~(1 _4 6 * a^ 4 3 2) p. x 

   (1 _4 6 * a^3 2 1) p. x 

We  will  now  obtain  a  simple  upper  bound  for  the  magnitude  of  the  difference  (that  is, 
|(g-a&h)  x),  beginning  with  the  final  expression  above,  and  continuing  with  a 
sequence of expressions that are greater than or equal to it: (If the expressions are to be 
entered, x should be set to a scalar value, as in x=: 5, to avoid length problems) 

   x=:5 
|(1 _4 6 * a^3 2 1) p. x         

Magnitude of (g-a&h) x 

| +/1 _4 6*(a^3 2 1)*x^i.3      

Polynomial as sum of terms 

+/(|1 _4 6)*(|a^3 2 1)*(|x^i.3)  

Sum of mags>:mag of sum  

+/1 4 6*(a^3 2 1)*|x^0 1 2 

a is non-negative 

+/6*(a^3 2 1)*|x^0 1 2    

+/6*a*|x^0 1 2            

For a<1, the largest term is a^1 

6*a*+/|x^0 1 2 

a* (6*+/|x^0 1 2) 

final 

The 
expression 
a=:  e  %  (6*+/|x^0  1  2), 
|(g-a&h) x will not exceed e. For example: 

provides 

the 

then 

basis 

for 

frame 
the  magnitude  of 

a 

function: 

if 
the  difference 

   e=: 0.001 
   a=: e % (6*+/|x^0 1 2) 
   |(g-a&h) x 
0.000806451 

C. Continuity 

Informally  we  say  that  a  function  f  is  continuous  in  an  interval  if  its  graph  over  the 
interval  can  be  drawn  without  lifting  the  pen.  Formally,  we  define  a  function  f  to  be 
continuous in an interval if it possesses a limit at every point in the interval. 

For example, the integer part function <. is continuous in the interval from 0.1 to 0.9, 
but not in an interval that contains integers. 

D. Convergence of Series 

The exponential coefficients function  ec=:%@!, generates coefficients for a polynomial 
that approximates its own derivative, and the growth function (exponential) is defined as 
the limiting value for an infinite number of terms. Since the coefficients produced by ec 
decrease  rapidly  in  magnitude  (the  20th  element  is  %!19,  approximately  8e_18),  it 
seemed  reasonable  to  assume  that  the  polynomial  (ec  i.n)&p.  would  converge  to  a 

  
 
 
 
112  Calculus 

limit  for  large  n  even  when  applied  to  large  arguments.  We  will  now  examine  more 
carefully the conditions under which a sum of such a series approaches a limit. 

It  might  seem  that  the  sum  of  a  series  whose  successive  terms  approach  zero  would 
necessarily  approach  a  limiting  value.  However,  the  series  %@>:@i.  n  provides  a 
counter  example,  since  (by  considering  sums  over  successive  groups  of  2^i.  k 
elements) it is easy to show that its sum can be made as large as desired. 

If at a given term t in a series the remaining terms are decreasing in such a manner that 
the magnitudes of the ratios between each pair of successive terms are all less than some 
value  r  less  than  1, then the magnitude of the sum of the terms after  t is less than the 
magnitude of t%(1-r); if this quantity can be shown to approach 0, the sum of the entire 
series therefore approaches a limit. 

This  can  be  illustrated  by  the  series  r^i.n,  which  has  a  fixed  ratio  r,  and  has  a  sum 
equal to (1-r^n) % (1-r). For example: 

   S=: [ ^ i.@] 
   T=: (1"0-^)%(1"0-[) 
   r=: 3 
   n=: 10 
   r S n 
1 3 9 27 81 243 729 2187 6561 19683 

   +/ r S n 
29524 
   r T n 
29524 

A proof of the equivalence of T and the sum over S can be based on the patterns observed 
in the following: 

   (1,-r) */ r S n 
 1  3   9  27   81  243   729  2187   6561  19683 
_3 _9 _27 _81 _243 _729 _2187 _6561 _19683 _59049 

   ]dsums=:+//.(1,-r) */ r S n 
1 0 0 0 0 0 0 0 0 0 _59049 

   -r^10 
_59049   

+/dsums 

_59048 

   (1-r) * r T n  
_59048 

If  the  magnitude  of  r  is  less  than  1,  the  value  of  r^n  in  the  numerator  of  r  T  n 
approaches  zero  for  large  n,  and  the  numerator  itself  therefore  approaches  1; 
consequently, the result of r T n approaches %(1-r) for large n. 

The  expression  ec  j-0  1  gives  a  pair  of  successive  coefficients  of  the  polynomial 
approximation to the exponential, and %/ec j-0 1 gives their ratio. For example: 
   ec=:%@! 
   j=: 4 
   ec j-0 1 
0.0416667 0.166667 

  
 
 
 
 
 
 
 
Chapter 8  Analysis  113 

   %/ec j-0 1 
0.25   
   %j 
0.25 
The ratio of the corresponding terms of the polynomial (ec i.n)&p. applied to x is x 
times this, namely, x%j. At some point this ratio becomes less than 1, and the series for 
the exponential therefore converges. Similar proofs of convergence can be made for the 
series for the circular and hyperbolic sines and cosines, after removing the alternate zero 
coefficients. 

Another  generally  useful  proof  of  convergence  can  be  made  for  certain  series  by 
establishing upper and lower bounds for the series. This method applies if the elements 
alternate in sign and decrease in magnitude.  

We will illustrate this by first developing a series approximation to the arctangent, that is, 
the inverse tangent _3o.. The development proceeds in the following steps: 

1.  Derivative of the tangent 

2.  Derivative of the inverse tangent 

3.  Express the derivative as a polynomial in the tangent 

4.  Express the derivative as the limit of a polynomial 

5. 

Integrate the polynomial 

6.  Apply the polynomial to the argument 1 to get a series whose sum  approximates 

the arctangent of 1 (that is, one-quarter pi): 

   ]x=: 1,1r6p1,1r4p1,1r3p1 
1 0.523599 0.785398 1.0472 

   '`sin cos tan arctan'=: (1&o.)`(2&o.)`(3&o.)`(_3&o.) 

   sin x 
0.841471 0.5 0.707107 0.866025 

   cos x 
0.540302 0.866025 0.707107 0.5 

   tan x 
1.55741 0.57735 1 1.73205 
   (sin % cos) x 
1.55741 0.57735 1 1.73205 

   INV=: ^:_1 
   tan INV tan x 
1 0.523599 0.785398 1.0472 

   D=:("0) (D.1) 
   tan D  
   (sin % cos) D  
   (sin%cos)*(sin D%sin)-(cos D%cos)  ΞΈ7Β§2K 
   tan*(cos%sin)-(-@sin%cos)               
   tan * %@tan +tan 

Β§2K 

Definition of tan 

  
 
 
 
 
 
 
 
 
 
114  Calculus 

   1"0 + tan * tan 
   1"0 + *:@tan 

Derivative of tangent QED 

   tan INV D 
   1"0 % tan D @(tan INV) 
   1"0 % (1"0 + *:@tan) @ (tan INV) 
   1"0 % (1"0@(tan INV)) + *:@tan@(tan INV) 
   1"0 % 1"0 + *:@] 
   1"0 % 1"0 + *: 
   %@(1"0+*:) 

ΞΈ7Β§2K 

Derivative of inverse tan QED 

   c=: 1 0 1 
   % c&p. x    
0.5 0.784833 0.618486 0.476958    

   b=: 1 0 _1 0 1 0 _1 0 1 0 _1 
   c */ b 
1 0 _1 0 1 0 _1 0 1 0 _1 
0 0  0 0 0 0  0 0 0 0  0 
1 0 _1 0 1 0 _1 0 1 0 _1 

Derivative of inverse tangent as 
reciprocal of a polynomial 

Coeffs of approx reciprocal 

   +//. c */ b    
1 0 0 0 0 0 0 0 0 0 0 0 _1  

Product polynomial  shows that 
b&p.is approx reciprocal of c&p. 

   %@(1:+*:) x 
0.5 0.784833 0.618486 0.476958 

   b&p. x 
0 0.7845 0.584414 _0.352555 

   int=: 0: , ] % 1: + i.&# 
   a=: int b 
   a&p. x 
0.744012 0.482334 0.6636 0.736276 

   tan INV x 
0.785398 0.482348 0.665774 0.808449 

Better approx needs more terms of b 

The fn a&p. is the integral of b&p. 
Approximation to arctangent 

   7.3 ": 8{. a 
0.000  1.000  0.000 _0.333  0.000  0.200  0.000 _0.143 
Arctan 1 is one-quarter pi 
   1r4p1 , a p. 1 
0.785398 0.744012 

Coeffs for arctan are reciprocals of odds 

   +/a 
0.744012 

Polynomial on 1  is sum of coefficients 

   gaor=: _1&^@i. * 1: % 1: + 2: * i. 
   gaor 6 
1 _0.333333 0.2 _0.142857 0.111111 _0.0909091 

Generate alternating odd reciprocals 

   +/\gaor 6 
1 0.666667 0.866667 0.72381 0.834921 0.744012 

    7 2 $ +/\ gaor 14 
       1 0.666667 

First column (sums of odd number 

  
    
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 8  Analysis  115 

of terms) are decreasing upper  
bounds of limit. Second column 
(sums of even number of terms) 
are increasing lower bounds of limit. 

0.866667  0.72381 
0.834921 0.744012 
0.820935 0.754268                 
0.813091  0.76046          
0.808079 0.764601 
0.804601 0.767564 

   1r4p1 , +/gaor 1000 
0.785398 0.785148 

D1  Test the derivations in this section by enclosing a sentence in parens and applying 

it to an argument, as in (1: + *:@tan) x 

D2  Prove that a decreasing alternating series can be bounded as illustrated.          

[Group pairs of successive elements to form a sum of positive or negative terms]  

  
 
 
 
117 

Appendix 

Topics in Elementary Math 

A. Polynomials  

An  atomic  constant  multiplied  by  an  integer  power  (as  in  a"0  *  ^&n)  is  called  a 
monomial, and a sum of monomials is called a polynomial. We now define a polynomial 
function, the items of its list left argument being called the coefficients of the polynomial: 

   pol=: +/@([ * ] ^ i.@#@[) " 1 0    

For example: 

   c=: 1 2 3 [ x=: 0 1 2 3 4 
   c pol x 
1 6 17 34 57 

1 3 3 1 pol x 

1 8 27 64 125 

The polynomial may therefore be viewed as a weighted sum of powers, the weights being 
specified by the coefficients. It is important enough to be treated as a primitive, denoted 
by p. . 

It  is  important  for  many  reasons.  In  particular,  it  is  easily  expressed  in  terms  of  sums, 
products,  and  integral  powers;  it  can  be  used  to  approximate  almost  any  function  of 
practical  interest;  and  it  is  closed  under  a  number  of  operations;  that  is,  the  sums, 
products,  derivatives,  and  integrals  of  polynomials  are  themselves  polynomials.  For 
example:    

   x=: 0 1 2 3 4 [ b=: 1 2 1 [ c=: 1 3 3 1 
   (b p. x) + (c p. x) 
2 12 36 80 150 

Sum of polynomials 

   b +/@,: c 
2 5 4 1 

   (b +/@,: c) p. x 
2 12 36 80 150 

   (b p. x) * (c p. x) 
1 32 243 1024 3125 

   b +//.@(*/) c 
1 5 10 10 5 1 

β€œSum” of coefficients 

Sum polynomial 

Product of polynomials 

β€œProduct” of coefficients 

   (b +//.@(*/) c) p. x 

Product polynomial 

  
 
 
 
 
 
 
 
 
 
 
 
118  Calculus 

1 32 243 1024 3125 

   c&p. d.1 x 
3 12 27 48 75 

   c&p. d._1 x 
0 3.75 20 63.75 156 

   derc=: }.@(] * i.@#) 
   derc c 
3 6 3 

   (derc c) p. x 
3 12 27 48 75 

   intc=: 0: , ] % >:@i.@# 
   intc c 
0 1 1.5 1 0.25 
   (intc c)&p. x 
0 3.75 20 63.75 156 

Derivative of polynomial 

Integral of polynomial 

β€œDerivative” coefficients 

Derivative polynomial 

β€œIntegral” coefficient 

is  "linear 

is 
A  polynomial 
(c  p.  x)+(d  p.  x).  This 
linearity  can  be  made  clear  by  expressing 
c p. x as m&mp c, where m is the Vandermonde matrix obtained as a function of x and 
c. Thus: 

that  (c+d)  p.  x 

its  coefficients" 

in 

in 

   vm=: [ ^/ i.@#@] 
   x=: 0 1 2 3 4 5 
   c=: 1 3 3 1 
   x vm c 
1 0   0   0 
216 
1 1   1   1 
1 2   4   8 
1 3   9  27 
1 4  16  64 
1 5  25 125 

  (x vm c) mp c 
1 8 27 64 125 216   

c p. x 
  1 8 27 64 125 

The  expression  c=:  (f  x)  %.  x^/i.n  yields  an  n-element  list  of  coefficients  such 
that  c  p.  x  is  the  best  least-squares  approximation  to  the  values  of  the  function  f 
applied  to  the  list  x.  In  other  words,  the  value  of  +/sqr  (f  x)-c  p.  x  is  the  least 
achievable for an n-element list of coefficients c. 

We now define a conjunction FIT such that a FIT f x produces the coefficients for the 
best polynomial fit of a elements: 

   FIT=: 2 : 'y. %. ^/&(i. x.)' 
   ]c=: 5 FIT ! x=: 0 1 2 3 4 
1 _2.08333 3.625 _1.91667 0.375 

   c p. x 
1 1 2 6 24 
   ]c=: 4 FIT ! x 
0.871429 3.27381 _3.71429 1.08333 

1 1 2 6 24 

!x 

  
 
 
 
 
 
 
 
 
Appendix   119 

   c p. x 
0.871429 1.51429 1.22857 6.51429 23.8714 

B. Binomial Coefficients 

m!n is the number of ways that m things can be chosen out of n; for example 2!3 is 3, 
and  3!5  is  10.  The  expression  c=:  (i.  n+1)!n  yields  the  binomial  coefficients  of 
order n, and c p. x is equivalent to (x+1)^n. For example: 

   ]c=: (i. n+1)!n=: 3 
1 3 3 1 

   c p. x=: 0 1 2 3 4 5 
1 8 27 64 125 216 

   (x+1) ^ n 
1 8 27 64 125 216 

   <@(i.@>: ! ])"0 i. 6 
β”Œβ”€β”¬β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” 
β”‚1β”‚1 1β”‚1 2 1β”‚1 3 3 1β”‚1 4 6 4 1β”‚1 5 10 10 5 1β”‚ 
β””β”€β”΄β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ 

C. Complex Numbers 

Just  as  subtraction  and  division  applied  to  the  counting  numbers  (positive  integers) 
introduce  new  classes  of  numbers  (called  negative  numbers  and  rational  numbers),  so 
does the square root applied to negative numbers introduce a new class called imaginary 
numbers. For example: 

   a=: 1 2 3 4 5 6 
   ]b=: -a 
_1 _2 _3 _4 _5 _6 

   % a 
1 0.5 0.333333 0.25 0.2 0.166667 

Negative numbers 

Rational numbers 

   %: b 
0j1 0j1.41421 0j1.73205 0j2 0j2.23607 0j2.44949 

Imaginary numbers 

Arithmetic functions are extended systematically to this new class of numbers to produce 
complex  numbers,  which  are  represented  by  two  real  numbers,  a  real  part  and  an 
imaginary part, separated by the letter j. Thus: 

   a+%:b 
1j1 2j1.41421 3j1.73205 4j2 5j2.23607 6j2.44949 

Complex numbers 

   j. a 
j1 0j2 0j3 0j4 0j5 0j6 
   ]d=: a+j. 5 4 3 2 1 0 
1j5 2j4 3j3 4j2 5j1 6 

The function j. multiplies 
its argument by 0j1 
The monad + is the conjugate 
function; it reverses the 

  
 
 
 
 
 
 
 
 
 
 
 
 
120  Calculus 

   +d 
1j_5 2j_4 3j_3 4j_2 5j_1 6 

   d*+d 
26 20 18 20 26 36 

sign of the imaginary part 

Product with the conjugate 
produces a real number 

   %: d*+d 
5.09902 4.47214 4.24264 4.47214 5.09902 6  complex number 

Magnitude of a 

   |d 
5.09902 4.47214 4.24264 4.47214 5.09902 6 

D. Circular and Hyperbolic Functions.  

sinh=: 5&o. 
cosh=: 6&o. 
tanh=: 7&o. 

   sin=: 1&o. 
   cos=: 2&o. 
   tan=: 3&o.  
   SIN=: sin@rfd       
   COS=: cos@rfd 
   TAN=: tan@rfd 
   rfd=: o.@(%&180)    

Sine in degrees 

Radians from degrees  

E. Matrix Product and Linear Functions 

The  dot  conjunction  applied  to  the  sum  and  product  functions  yields  a  function 
commonly referred to as the dot or matrix product. Thus: 

   mp=: +/ . * 
   ]m=: i. 3 3 
0 1 2   
3 4 5   
6 7 8   

   n mp m 
15  18  21 
42  54  66 
69  90 111 
96 126 156 

]n=: i. 4 3    

0  1  2 
3  4  5 
6  7  8 
9 10 11 

3 2 1 mp m 

12 18 24 

1 4 6  mp m 

48 59 70 

Left and right bonds of the matrix product distribute over addition; that is, a&mp c+d is 
(a&mp c)+(a&mp d), and mp&b c+d is (mp&b c)+(mp&b d). For example: 

   mp&m 3 2 1 + 1 4 6 
60 77 94 
   (mp&m 3 2 1) + (mp&m 1 4 6) 
60 77 94 

A function that distributes over addition is said to be linear; the name reflects the fact that 
a linear function applied to the coordinates of collinear points produces collinear points. 
For example: 

  
 
 
 
 
 
 
 
 
 
 
 
Appendix   121 

   ]line=: 3 _7 1,:2 2 4 
3 _7 1 
2  2 4 

]a=: 3 1,:_4 2 

 3 1 
_4 2 

   a&mp line 
11 _19 7 
_8  32 4 

    mp& 3 1 _2 line 
0 0 

mp&3 1 _2 a &mp line 

0 0 

F. Inverse, Reciprocal, And Parity 

We will now define and illustrate the use of four further adverbs: 

      I=: ^: _1 
      R=: %@ 
    ODD=: .: - 
   EVEN=: .. - 

Inverse adverb 
Reciprocal adverb 
Odd adverb 
Even adverb 

   *: I x=: 0 1 2 3 4 5 
0 1 1.41421 1.73205 2 2.23607 

Inverse of the square, 
that is, the square root 

   *: R x 
_ 1 0.25 0.111111 0.0625 0.04   

Reciprocal of the square,  
that is, %@*:, or ^&_2 

   c=: 4 3 2 1 
   even=: c&p. EVEN 

Even part of polynomial c&p. 

   odd=: c&p.  ODD 

Odd part of polynomial 

   even x 
4 6 12 22 36 54 

   odd x 
0 4 14 36 76 140 

   (even + odd) x 
4 10 26 58 112 194 

   c&p. x 
4 10 26 58 112 194 

   4 0 2 0 p. x 
4 6 12 22 36 54 

   0 3 0 1 p. x 
0 4 14 36 76 140  

Even function applied to x 

Odd function applied to x 

Sum of even and odd parts 
is equal to the original 

function c&p. 

Even part is a polynomial with non- 
zero coefficients for even powers 

Odd part is a polynomial with non- 
zero coefficients for odd powers 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122  Calculus 

For an even function, f -y equals f y; for an odd function, f -y equals -f y. Plots of 
even  and  odd  functions  show  their  graphic  properties:  the  graph  of  an  even  function  is 
"reflected" in the vertical axis, and the odd part in the origin. 

Exercises 

AP1 

AP2 

Enter the expressions of this section, and verify that the results agree with those 
given in the text. 

Predict  the  results  of  each  of  the  following  sentences,  and  then  enter  them  to 
validate your predictions: 

   D=: ("1) (D.1) 

   x=: 1 2 3 4 5 

   |. D x 

   2&|. D x 

   3 1 0 2 &{ D x 

   +/\ D x 

   +/\. D x 

AP3  Define show=: {&'.*' and use it to display the results of Exercises G2, as in 

show |. D x . 

AP4 

 Define a function rFd to produce radians from degrees, and compare rFd 90 180 
with 

 o. 0.5 1 . 

[     rFd=: %&180@o.   ] 

AP5  Define a function AREA such that AREA v yields the area of a triangle with two 
sides of lengths  0{v and  1{v and with an angle of  2{v degrees between them. 
Test  it  on  triangles  such  as  2  3  90  and  2  3  30,  whose  areas  are  easily 
computed. 

            [AREA=: -:@(0&{ * 1&{ * 1&o.@rFd@{:)"1] 

AP6 

Experiment  with  the  vector  derivative  of  the  triangle  area  function  of  Exercise 
G5, using VD=: ("1)(D.1) . 

[AREA VD 2 3 90] 

AP7  Heron's formula for the area of a triangle is the square root of the product of the 
semiperimeter  with  itself  less  zero  and  less  each  of  the  three  sides.  Define  a 
function  hat  to  give  Heron's  area  of  a  triangle,  and  experiment  with  its  vector 
derivative  hat  VD. In particular, try the case hat VD 3 4 5, and explain the 
(near) zero result in the final element. 

[     hat=: %:@(*/)@(-:@(+/) - 0: , ])"1   ] 

AP8  Define a function bc such that bc n yields the binomial coefficients of order n, a 
function  tbc  such  that  tbc  n  yields  a  table  of  all  binomial  coefficients  up  to 

  
 
order  n,  and  a  function  tabc  for  the  corresponding  alternating  binomial 
coefficients. 

Appendix   123 

[    bc=: i.@>: ! ] 

tbc=: !/~ @ (i.@>:) 

tabc=: %.@tbc        ] 

AP9 

Test  the  assertion  that  (bc  n)  p.  x=:  i.  4  is  equivalent  to  x^n+1  for 
various values of n. 

AP10  Write an expression to yield the matrix m such that mp&m is equivalent to a given 
linear function L. Test it on the linear functions L=:|."1 and L=:3&A."1, using 
the argument x=:3 1 4 1 6 

[  L = i. # x ] 

AP11  Experiment  with  the  use  of  various  functions  on  imaginary  and  complex 
numbers,  including  the  exponential,  the  sine,  cosine,  hyperbolic  sine  and 
hyperbolic cosine. Also experiment with matrices of complex numbers and with 
the use of the matrix inverse and matrix product functions upon them. 

  
 
 
125 

References 

1. 

2. 

 Iverson, Kenneth E., Arithmetic, ISI 1991 

Lakatos,  Imre,  Proofs  and  Refutations:  the  logic  of  mathematical  discovery, 
Cambridge University Press. 

3.   Lanczos, Cornelius, Applied Analysis, Prentice Hall, 1956. 

4.  McConnell,  A.J.,  Applications  of  the  Absolute  Differential  Calculus,  Blackie  and 

Son, Limited, London and Glasgow, 1931.  

5.   Oldham, Keith B., and Jerome Spanier, The Fractional Calculus, Academic Press, 

1974. 

6. 

Johnson,  Richard  E., and Fred L. Kiokemeister, Calculus with analytic geometry, 
Allyn and Bacon, 1957. 

7. 

 Hildebrand, , F.B., Introduction to Numerical Analysis, McGraw-Hill, 1956. 

8.  Woods, Frederick S., Advanced Calculus, Ginn and Company, 1926. 

9. 

Schey, H.M., Div, Grad, Curl, and All That, W.W. Norton, 1973. 

10. 

Jordan, Charles, Calculus of Finite Differences, Chelsea, 1947.   

11.  Coleman, A.J. et al, Algebra, Gage, 1979. 

12.  Churchill,  Ruel  V.,  Modern  Operational  Mathematics  in  Engineering,  McGraw-

Hill, 1944. 

13.  Eisenhart,  Luther  Pfahler,  A  Treatise  on  the  Differential  Geometry  of  Curves  and 

Surfaces, Ginn, 1909. 

14.  Kline, Morris, Mathematics: The loss of certainty, Oxford, 1980 

  
 
 
  Calculus 

112266 

Index 

acceleration, 10, 28, 29, 105 

Calculus of Differences, 21 

adverb, 11, 12, 15, 25, 32, 49, 67, 73, 74, 82, 87, 

Calculus of Finite Differences, 49 

90, 91, 92, 96, 99, 103, 104, 123 

adverbs, 11, 12, 63, 123 

aggregation, 57 

alternating binomial coefficients, 59, 125 

alternating sum, 14, 93 

ambivalent, 12 

Analysis, 109 

Celsius, 31 

chain rule, 15 

circle, 70 

circular, 26, 30, 31, 69, 70, 72, 73, 75, 86, 97, 

98, 115 

Circular, 122 

Circulars, 29 

angle, 41, 42, 75, 77, 78, 79, 80, 81, 124 

closed, 119 

anti-derivative, 15 

Applications, 86 

AREA, 100, 124 

AREAS, 104 

Coefficient Transformations, 55 

Coefficients, 28, 91 

comments, 13 

complementary minor, 93 

Argument Transformations, 31 

complex numbers, 86, 121, 125 

atop, 30, 31 

Atop, 30 

axes, 42 

Complex Numbers, 121 

complex roots, 92 

computer, 10, 11, 13, 14, 15, 22, 63 

beta function, 63 

COMPUTER, 15 

binomial coefficients, 59, 60, 61, 63, 112, 121, 

conjugate, 86, 122 

125 

Binomial Coefficients, 121 

103, 120, 122 

conjunction, 12, 13, 15, 30, 31, 62, 63, 65, 69, 

binormals, 98 

conjunctions, 11, 12, 31, 63 

bisection method, 87, 91 

constant function, 33, 106, 110 

bold brackets, 13 

Calculus, 7 

Continuity, 113 

continuous, 26, 49, 86, 113 

  
 
 
2  Calculus 

contour integral, 86 

difference calculus, 16, 61 

conventional notation, 10 

Difference Calculus, 49 

CONVERGENCE OF SERIES, 114 

Differential Calculus, 23 

copula, 11, 12 

differential equation, 96 

cos, 30, 31, 70, 72, 73, 75, 79, 80, 81, 86, 106, 

Differential Equations, 25 

116, 122 

cosh, 29, 69, 70, 72, 73, 106, 122 

cosine, 29, 30, 31, 73, 75, 76, 77, 80, 97, 106, 

125 

cross, 79 

cross product, 47, 80, 81, 82, 83 

Cross Products, 79 

curl, 46, 79 

curves, 97 

cylinder, 98 

de Morgan, 15 

decay, 28, 67, 68, 69, 73, 106 

Differential Geometry, 97 

differintegral, 61, 62 

differintegrals, 60 

direction, 41 

discontinuous, 85 

displayed, 15 

divergence, 42, 46 

Divergence, 42 

division, 90, 92, 121 

dot, 122 

DOT, 79 

Decay, 27 

electrical system, 29 

degrees, 30, 79, 80, 97, 98, 122, 124 

Elementary Math, 119 

derivative, 9, 10, 15, 16, 17, 18, 22, 25, 26, 27, 
28, 29, 32, 33, 37, 40, 49, 52, 61, 62, 63, 65, 
68, 70, 78, 79, 86, 87, 88, 89, 90, 92, 93, 94, 
95, 99, 105, 109, 112, 114, 115, 124 

Derivative, 15, 16 

Derivative of polynomial, 120 

derivative operator, 10 

ellipse, 99, 107 

Even part, 123 

executable, 10, 11, 22 

executed, 14 

EXERCISES, 13, 124 

derivatives, 15, 16, 21, 26, 30, 31, 32, 39, 51, 52, 
60, 61, 63, 68, 70, 72, 79, 96, 98, 105, 110, 
119 

experimentation, 10, 15, 22, 67 

Experimentation, 69 

derived function, 15 

determinant, 38, 41, 83, 92, 93 

Determinant, 92 

diagonal sums, 69 

difference, 49 

experiments, 11, 63, 67, 69, 105, 106, 107 

explore, 11 

exponential, 12, 16, 26, 27, 28, 29, 69, 73, 85, 99, 

105, 114, 115, 125 

Exponential Family, 73 

exponentially, 26 

  
Index   3 

extrema, 89 

Extrema, 87 

Hyperbolics, 28 

identity, 33, 52, 58, 65, 77, 79, 95 

f., 16, 28, 47, 86, 96, 99, 101, 102 

imaginary numbers, 15, 121 

factorial function, 15, 62 

imaginary part, 121 

Fahrenheit, 31 

Family of cosines, 96 

induction, 33 

infinitesimal, 49 

first derivative, 29, 32, 61, 105 

Infinitesimal Calculus, 49 

foreign conjunction, 15 

Inflection Points, 87 

fork, 33, 52, 63 

Fourier series, 96 

Fractional Calculus, 61 

Fractional derivatives, 21 

function, 12 

functions, 7 

Functions, 11, 32, 105 

gamma function, 62 

gamma function and imaginary numbers., 15 

Gradient, 38 

growth, 7, 16, 26, 27, 28, 67, 68, 69, 73, 114 

Growth, 26 

harmonics, 96 

heaviside, 10 

Heaviside's, 46 

helix, 97 

Heron's area, 124 

hierarchy, 12 

high-school algebra, 12, 109 

hyperbola, 29, 70 

hyperbolic, 26, 29, 69, 72, 73, 106, 115, 125 

Hyperbolic Functions, 122 

informal proofs, 13, 22, 52 

initial guess, 89 

insert, 11 

integer part, 85 

integral, 15, 21, 22, 55, 61, 62, 63, 86, 99, 100, 

101, 103, 104, 105, 116, 119 

Integral, 15, 16 

integration, 61, 86, 100, 101, 105 

Interpretations, 18, 85 

Inverse, 123 

inverse matrix, 57 

irrotational, 46 

items, 12, 82, 119 

Jacobian, 40, 41, 42 

jerk, 105 

Jordan, 49 

Kerner’s method, 97 

KERNER'S METHOD, 91 

Kline, 109 

Lakatos, 21 

Laplacian, 42 

leibniz, 10 

Less than, 11 

  
 
4  Calculus 

Lesser of, 11 

limit, 10, 22, 79 

Limits, 110 

line, 86 

linear, 123 

minors, 93 

modern, 10 

multiplication table, 12 

natural logarithm, 73 

negation, 12, 27 

linear combinations, 96 

negative numbers, 121 

Linear Differential Equations, 96 

newton, 10 

linear form, 15 

Newton's Method, 89 

linear function, 40, 41, 57, 58, 94, 95, 96, 106, 

normal, 79 

123, 125 

linear functions, 41 

Linear Functions, 94 

LINEAR FUNCTIONS, 122 

linear operator, 96 

lists, 11, 14, 32 

local, 87 

local behaviour, 16 

local minimum, 89 

logarithm, 73, 74 

Logarithm, 73 

Loss of Certainty, 109 

lower bounds, 115 

magnitude, 41 

Magnitude, 122 

matrices, 11, 56, 125 

MATRIX INVERSE, 94 

MATRIX PRODUCT, 122 

maximum, 87, 88, 89, 90 

Maxwell's, 46 

mechanical system, 29 

minimum, 11, 15, 87, 88, 89 

normalized coefficient, 91 

Normals, 82 

notation, 10, 11, 15, 22, 64, 102, 107 

Notation, 11 

NOTATION, 15 

nouns, 11, 12 

number of items, 82 

numerator, 115 

Odd part, 123 

operators, 10, 11 

Operators, 94 

oscillations, 29, 106 

osculating, 98 

outof, 61 

Parentheses, 12 

Parity, 71, 123 

Partial derivatives, 21 

periodic  functions, 29 

Permanent, 92 

permutation, 95 

permutations, 42 

  
Index   5 

perpendicular, 79 

rank-0, 37 

Physical Experiments, 105 

rate of change, 7 

pi, 103, 104 

plane, 80 

point of inflection, 88 

polynomial, 26, 27, 30, 31, 49, 50, 55, 67, 69, 87, 
89, 90, 91, 92, 96, 100, 101, 103, 106, 112, 
114, 115, 116, 119, 120, 123, 124 

polynomials, 26, 28, 68, 90, 92, 119 

Polynomials, 119 

positive integers, 121 

rational constant, 63 

rational numbers, 121 

real part, 121 

Reciprocal, 123 

residuals, 92 

rise, 89 

roots, 87 

rotation, 41, 42, 46 

power, 10, 15, 17, 21, 49, 51, 52, 74, 103, 112, 

Rotation, 80 

119 

Power, 73 

precedence, 12 

primes, 14 

principal normal, 98 

Product of polynomials, 119 

pronouns, 11 

proof, 14, 17, 67, 68, 69, 72, 110, 111, 114, 115 

proofs, 13, 21, 22, 52, 67, 115 

Proofs, 72, 80 

Proofs and Refutations, 21 

run, 89 

scalar product, 79 

scalars, 21, 80 

Scaling, 30 

Secant Slope, 15, 16 

secant slopes, 16 

second derivative, 10 

Semi-Differintegrals, 63 

series, 115 

Simpson's Rule, 101 

proverbs, 11 

punctuation, 12 

pyramid, 104 

Pythagoras, 76 

quotes, 14, 86 

radians, 30, 41, 78, 79, 86, 124 

Random starting value, 91 

rank, 12, 21, 37, 93, 94, 107 

rank conjunction, 12 

sin, 13, 30, 31, 70, 72, 73, 75, 79, 81, 86, 106, 

116, 122 

sine, 29, 30, 73, 75, 76, 77, 78, 79, 80, 81, 96, 97, 

106, 125 

Sine, 13, 73, 122 

sinh, 29, 69, 70, 72, 73, 106, 122 

Skew part, 82 

slope, 89 

Slopes As Linear Functions, 57 

Stirling numbers, 56 

stope polynomial, 55 

  
 
6  Calculus 

subtraction, 12, 121 

Sum Formulas, 76 

Sum of polynomials, 119 

summation, 57 

surfaces, 97 

tables, 11, 89 

tangent, 15, 22, 78, 85, 86, 88, 89, 98, 107, 115, 

116 

under, 15, 49, 51, 57, 65, 86, 99, 100, 101, 103, 

104, 105, 114, 119 

upper, 115 

Vandermonde, 101, 120 

vector calculus, 38, 46, 97, 107 

Vector Calculus, 37 

vector derivative, 92 

vector product, 79, 98 

tautologies, 72, 73, 76, 77, 79 

vectors, 10, 11, 79, 80, 81, 82, 98 

Tautologies, 78 

tautology, 33, 79 

tensor analysis, 38 

Terminology, 11 

third derivative, 105 

trapezoids, 100 

trigonometric, 26, 75 

Trigonometric Functions, 75 

Vectors, 11 

velocity, 7 

verbs, 11, 12 

vocabulary, 15 

volume derivative, 40 

volume of revolution, 105 

VOLUMES, 104 

weighted sums, 96 

trigonometry, 30, 75, 77, 79, 109 

Word Problems, 86