Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 126,029 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
AN INTRODUCTION TO THE

USA COMPUTING OLYMPIAD

Darren Yao
2020

R (cid:140) (cid:135)

Java Edition

Foreword

This book was written as a comprehensive and up-to-date training resource for the USA
Computing Olympiad. The goal was to create an “Art of Problem Solving” of sorts for the
USACO: a one-stop-shop guide to prepare competitive programmers for the Bronze and Silver
divisions of the USACO contests.

My primary motivation for writing this book was the struggle to find the right resources
when I first started doing USACO contests. When I eventually reached the Platinum division,
new competitors often asked me for help in structuring their competitive programming
practice. Since I always found myself explaining that the USACO lacked comprehensive
training resources, I decided to write this book.

I would like to thank a number of people for their contributions to this book. In particular,
Michael Cao for writing sections 10.6 and 10.7 and helping with content revisions, Jason Chen
for writing section 14.2 and extensive help with both content and LaTeX formatting, and
Aaryan Prakash, Rishab Parthasarathy, Kevin Wang, and Stephanie Wu for their valuable
and constructive feedback on early draft versions of the book.

I’d also like to thank the USACO discord community for supporting me through my
competitive programming journey; it was because of them that my competitive programming
successes, and this book, are possible.

Cover design by Dylan Yu.

Author’s Profile

Darren Yao is a USACO Platinum competitor. You can find his website at https:

//darrenyao.com/.

Copyright c(cid:13)2020 by Darren Yao

All rights reserved. No part of this book may be reproduced or used in any manner without
the prior written permission from the copyright owner.

i

Contents

I Basic Techniques

1 The Beginning

1.1 Competitive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Contests and Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Competitive Programming Practice . . . . . . . . . . . . . . . . . . . . . . .
1.4 About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Elementary Techniques

2.1
Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Time/Space Complexity and Algorithm Analysis

3.1 Big O Notation and Complexity Calculations . . . . . . . . . . . . . . . . . .
3.2 Common Complexities and Constraints . . . . . . . . . . . . . . . . . . . . .

4 Built-in Data Structures

4.1 Dynamic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Stacks and the Various Types of Queues
. . . . . . . . . . . . . . . . . . . .
4.3 Sets and Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II Bronze

5 Simulation

5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Complete Search

6.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Generating Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2
2
3
3
4

5
5
9

10
10
11

13
13
14
16
19

20

21
21
22
23

24
24
26
27

ii

CONTENTS

7 Additional Bronze Topics

7.1 Square and Rectangle Geometry . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Ad-hoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III Silver

8 Sorting and comparators

8.1 Comparators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Sorting by Multiple Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Greedy Algorithms

Introductory Example: Studying Algorithms . . . . . . . . . . . . . . . . . .
9.1
9.2 Example: The Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . .
9.3 Failure Cases of Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . .
9.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Graph Theory

10.1 Graph Basics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Graph Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Graph Traversal Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 Floodfill
. . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6 Disjoint-Set Data Structure
10.7 Bipartite Graphs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Prefix Sums

11.1 Prefix Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Two Dimensional Prefix Sums . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Binary Search

12.1 Binary Search on the Answer
. . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Elementary Number Theory

13.1 Prime Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 GCD and LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii

28
28
28
29

31

32
32
34
34

36
36
37
38
39

40
40
41
42
47
51
54
57
58

60
60
61
63

64
64
65
66

68
68
69
70
70

CONTENTS

14 Additional Silver Topics

14.1 Two Pointers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Line Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Bitwise Operations and Subsets . . . . . . . . . . . . . . . . . . . . . . . . .
14.4 Ad-hoc Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IV Problem Set

15 Parting Shots

iv

71
71
73
75
78
78

80

81

Part I

Basic Techniques

1

Chapter 1

The Beginning

1.1 Competitive Programming

Welcome to the world of competitive programming! If you’ve had some basic programming
experience with Java (perhaps at the level of an introductory course like AP Computer Science
A), and are interested in competitive programming, then this book is for you. (If your primary
language is C++, we also have a C++ edition of this book; please refer to that instead). If
you currently do not know how to code, there are numerous resources available online to help
you learn.

This book aims to guide you through your competitive programming journey by providing
a framework in which to learn the important contest topics. From competitive programming,
not only do you improve at programming, but you improve your problem-solving skills which
will help you in other areas. If at any point you have questions, feedback, or notice any
mistakes, please contact me at darren.yao@gmail.com. Best of luck, and enjoy the ride!

The goal of competitive programming is to write code to solve given problems quickly.
These problems are not open problems; they are problems that are designed to be solved in
the short timeframe of a contest, and have already been solved by the problem writer and
testers. In general, each problem in competitive programming is solved by a two-step process:
coming up with the algorithm, and then implementing it into working code. The degree of
mathematics knowledge varies from contest to contest, but generally the level of mathematics
required is relatively elementary, and we will review important topics in this book.

A contest generally lasts for several hours, and consists of a set of problems. For each
problem, when you complete your code, you submit it to a grader, which checks the answers
calculated by the your program against a set of predetermined test cases. For each problem,
you are given a time limit and a memory limit that your program must satisfy. Grading
varies between contests; sometimes there is partial credit for passing some cases, while other
times grading is all-or-nothing. For those of you with experience in software development,
note that competitive programming is quite different, as the goal is to write programs that
compute the correct answer, run quickly, and can be implemented quickly. Note that nowhere
was maintainability of code mentioned. This means that you should throw away everything
you know about traditional code writing; you don’t need to bother documenting your code,
because it only needs to be readable to you, during the contest.

2

CHAPTER 1. THE BEGINNING

3

1.2 Contests and Resources

The USA Computing Olympiad is a national programming competition that occurs four
times a year, with December, January, February, and US Open contests. The regular contests
are four hours long, and the US Open is five hours long. Each contest contains three problems.
Solutions are evaluated and scored against a set of predetermined test cases that are not
visible to the student. Scoring is out of 1000 points, with each problem being weighted
equally. There are four divisions of contests: Bronze, Silver, Gold, and Platinum. After each
contest, students who meet the contest-dependent cutoff for promotion will compete in the
next division for future contests.

While this book is primarily focused on the USACO, CodeForces is another contest
programming platform that many students use for practice. CodeForces holds 2-hour contests
very frequently, which are more focused on fast solving compared to USACO. However, we
do think CodeForces is a valuable training platform, so many exercises and problems will
come from there. We encourage you to create a CodeForces account and solve the provided
problems there. CodeForces submissions are all-or-nothing; unlike USACO, there is no partial
credit and you only receive credit for a problem if you pass all of the test cases.

We will also include some exercises from Antti Laaksonen’s website CSES. It contains a
selection of standard problems that you can use to learn and practice well-known algorithms
and techniques. You should note that CSES’s grader is very slow, so don’t worry if you
encounter a Time Limit Exceeded verdict; as long as you pass the majority of test cases
within the time limit, and your time complexity is reasonable, you can consider the problem
solved, and move on.

1.3 Competitive Programming Practice

Reaching a high level in competitive programming requires dedication and motivation.
For many people, their practice is inefficient because they do problems that are too easy, too
hard, or simply of the wrong type. This book aims to correct that by providing comprehensive
problem sets for each topic covered on the USA Computing Olympiad, as well as an extensive
selection of problems across all topics in the final chapter.

In the lower divisions, most problems use relatively elementary algorithms; the main
challenge is deciding which algorithm to use, and implementing it correctly. In a contest,
you should spend the bulk of your time thinking about the problem and coming up with the
algorithm, rather than typing code. Thus, you should practice your implementation skills,
so that during the contest, you can implement the algorithm quickly and correctly, without
resorting to debugging.

On Exercises and Practice Problems

You improve at competitive programming by solving problems, so we strongly recommend
that you make use of the included exercises in each section before moving on. Some of the
problems will be easy, and some of them will be hard. This is because problems that you
practice with should be of the appropriate difficulty. You don’t necessarily need to complete
all the exercises at the end of each chapter, just do what you think is right for you. A

CHAPTER 1. THE BEGINNING

4

problem at the right level of difficulty should be one of two types: either you struggle with
the problem for a while before coming up with a working solution, or you miss it slightly and
need to consult the solution for some small part. If you instantly come up with the solution,
a problem is likely too easy, and if you’re missing multiple steps, it might be too hard.

In general, especially on harder problems, I think it’s fine to read the solution relatively
early on, as long as you’re made several different attempts at it and you can learn effectively
from the solution.

• On a bronze problem, read the solution after 15-20 minutes of no meaningful progress,

after you’ve exhausted every idea you can think of.

• On a silver problem, read the solution after 30-40 minutes of no meaningful progress.

When you get stuck and consult the solution, you should not read the entire solution at
once, and you certainly shouldn’t look at the solution code. Instead, it’s better to read the
solution step by step until you get unstuck, at which point you should go back and finish the
problem, and implement it yourself. Reading the full solution or its code should be seen as a
last resort.

IDEs and Text Editors

Here’s some IDEs and text editors often used by competitive programmers:

• Java: Visual Studio Code or IntelliJ/Eclipse

• C++: Visual Studio Code, CodeBlocks, vim/gvim, Sublime Text.

• Do not use online IDEs that display your code publicly, like the free version of ideone.

This allows other users to copy your code, and you may get flagged for cheating.

1.4 About This Book

This book aims to prepare students for the Bronze and Silver division of the USACO, with
the goal of qualifying for Gold. We will do this by covering all the necessary algorithms, data
structures, and skills to pass the Bronze and Silver contests. Many examples and practice
problems have been provided; these are the most important part of studying competitive
programming, so make sure you pay careful attention to the examples and solve the practice
problems, which usually come from previous USACO contests. This book is intended for
those who have some programming experience – Basic knowledge of Java at the level of
an introductory class like AP Computer Science is expected. This book begins with some
necessary background knowledge, which is then followed by lessons on common topics that
appear on the Bronze and Silver divisions of USACO, and then examples. At the end of
each chapter will be a set of problems from USACO, CodeForces, and CSES, where you can
practice what you’ve learned in the chapter.

The primary purpose of this book is to compile all of the topics needed for a beginner in
one book, and provide all the resources needed, to make the process of studying for contests
easier.

Chapter 2

Elementary Techniques

2.1

Input and Output

In your CS classes, you’ve probably implemented input and output using standard input
and standard output, or using Scanner to read input and System.out.print to print output.
In CodeForces and CSES, input and output are standard, and the above methods work.
However, Scanner and System.out.print are slow when we have to handle inputting and
outputting tens of thousands of lines. Thus, we use BufferedReader and PrintWriter
instead, which are faster because they buffer the input and output and handle it all at once
as opposed to parsing each line individually.

However, in USACO, input is read from a file called problemname.in, and printing
output to a file called problemname.out. Note that you’ll have to rename the .in and .out
files. Essentially, replace every instance of the word template in the word below with the
input/output file name, which should be given in the problem.

In order to test a program, create a file called problemname.in, and then run the program.

The output will be printed to problemname.out.

Below, we have included Java example code for input and output in USACO. We import
the entire util and io libraries for ease of use. The template is intentionally kept short so
you can type it out, since use of prewritten code is not allowed in USACO as of the 2020-2021
season.

import java.io.*;
import java.util.*;

public class template {

public static void main(String[] args) throws IOException {

BufferedReader r = new BufferedReader(new

FileReader("template.in"));

(cid:44)→
PrintWriter pw = new PrintWriter(new BufferedWriter(new

(cid:44)→

FileWriter("template.out")));

StringTokenizer st = new StringTokenizer(r.readLine());
int n = Integer.parseInt(st.nextToken());

5

CHAPTER 2. ELEMENTARY TECHNIQUES

6

r.close();

pw.close();

}

}

We have several important functions that are used in reading input and printing output:

Method

Description

r.readLine()
st.nextToken()
Integer.parseInt

Reads the next line of the input
Reads the next token (up to a whitespace) and returns as a ‘String‘.
Converts the ‘String‘ returned by the ‘StringTokenizer‘ to an ‘int‘.

Double.parseDouble Converts the ‘String‘ returned by the ‘StringTokenizer‘ to a ‘double‘.

Long.parseLong
pw.println()
pw.print()

Converts the ‘String‘ returned by the ‘StringTokenizer‘ to a ‘long‘
Prints the argument to designated output stream and adds newline
Prints the argument to designated output stream

For example, if we’re reading the following input,

1 2 3

our code (inside the main method) will look like this:

BufferedReader r = new BufferedReader(new FileReader("template.in"));
PrintWriter pw = new PrintWriter(new BufferedWriter(new

(cid:44)→

FileWriter("template.out")));

StringTokenizer st = new StringTokenizer(r.readLine());
int a = Integer.parseInt(st.nextToken());
int b = Integer.parseInt(st.nextToken());
int c = Integer.parseInt(st.nextToken());

r.close();
pw.close();

Now, let’s suppose we wanted to read this input, which is presented on different lines,

with different data types:

100000000000
SFDFSDFSDFD
3

Then our code would be

CHAPTER 2. ELEMENTARY TECHNIQUES

7

BufferedReader r = new BufferedReader(new FileReader("template.in"));
PrintWriter pw = new PrintWriter(new BufferedWriter(new

(cid:44)→

FileWriter("template.out")));

StringTokenizer st = new StringTokenizer(r.readLine());
long a = Long.parseLong(st.nextToken());
st = new StringTokenizer(r.readLine());
String b = st.nextToken();
st = new StringTokenizer(r.readLine());
int c = Integer.parseInt(st.nextToken());

r.close();
pw.close();

Note how we have to re-declare the ‘StringTokenizer‘ every time we read in a new line.

For CodeForces, CSES, and other contests that use standard input and output, here is a

nicer template, which essentially functions as a faster Scanner:

import java.io.*;
import java.util.*;

public class template {

static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;

public InputReader(InputStream stream) {

reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;

}

String next() { // reads in the next string

while (tokenizer == null || !tokenizer.hasMoreTokens()) {

try {

tokenizer = new StringTokenizer(reader.readLine());

} catch (IOException e) {

throw new RuntimeException(e);

}

}
return tokenizer.nextToken();

}

public int nextInt() { // reads in the next int

return Integer.parseInt(next());

CHAPTER 2. ELEMENTARY TECHNIQUES

8

}

public long nextLong() { // reads in the next long

return Long.parseLong(next());

}

public double nextDouble() { // reads in the next double

return Double.parseDouble(next());

}

}

static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);

public static void main(String[] args) {

// YOUR CODE HERE

pw.close(); // flushes the output once printing is done

}

}

Here’s a brief description of the methods in our InputReader class, with an instance r,

and PrintWriter with an instance pw.

Method

r.next()
r.nextInt()
r.nextLong()

Description

Reads the next token (up to a whitespace) and returns a String
Reads the next token (up to a whitespace) and returns as an int
Reads the next token (up to a whitespace) and returns as a long

r.nextDouble() Reads the next token (up to a whitespace) and returns as a double
Prints the argument to designated output stream and adds newline
Prints the argument to designated output stream

pw.println()
pw.print()

Here’s an example to show how input/output works. Let’s say we want to write a program

that takes three numbers as input and prints their sum.

// InputReader template code above
static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);

public static void main(String[] args) {

int a = r.nextInt();
int b = r.nextInt();
int c = r.nextInt()
pw.println(a + b + c);

CHAPTER 2. ELEMENTARY TECHNIQUES

9

pw.close();

}

2.2 Data Types

There are several main data types that are used in contests: 32-bit and 64-bit integers,

floating point numbers, booleans, characters, and strings.

The 32-bit integer supports values between −2 147 483 648 and 2 147 483 647, which is
roughly equal to ± 2×109. If the input, output, or any intermediate values used in calculations
exceed the range of a 32-bit integer, then a 64-bit integer must be used. The range of the
64-bit integer is between −9 223 372 036 854 775 808 and 9 223 372 036 854 775 807 which is
roughly equal to ± 9 × 1018. Contest problems are usually set such that the 64-bit integer is
sufficient. If it’s not, the problem will ask for the answer modulo m, instead of the answer
itself, where m is a prime. In this case, make sure to use 64-bit integers, and take the
remainder of x modulo m after every step using x %= m;.

Floating point numbers are used to store decimal values. It is important to know that
floating point numbers are not exact, because the binary architecture of computers can only
store decimals to a certain precision. Hence, we should always expect that floating point
numbers are slightly off. Contest problems will accommodate this by either asking for the
greatest integer less than 10k times the value, or will mark as correct any output that is
within a certain (cid:15) of the judge’s answer.

Boolean variables have two possible states: true and false. We’ll usually use booleans to
mark whether a certain process is done, and arrays of booleans to mark which components of
an algorithm have finished.

Character variables represent a single Unicode character. They are returned when you
access the character at a certain index within a string. Characters are represented using the
ASCII standard, which assigns each character to a corresponding integer; this allows us to do
arithmetic with them, for example, System.out.println('f' - 'a'); will print 5.

Strings are effectively arrays of characters. You can easily access the character at a certain
index and take substrings of the string. String problems on USACO are generally very easy
and don’t involve any special data structures.

Chapter 3

Time/Space Complexity and
Algorithm Analysis

In programming contests, there is a strict limit on program runtime. This means that
in order to pass, your program needs to finish running within a certain timeframe. For
USACO, this limit is 4 seconds for Java submissions. A conservative estimate for the number
of operations the grading server can handle per second is 108.

3.1 Big O Notation and Complexity Calculations

We want a method of characterizing how many operations it takes to run each algorithm,
in terms of the input size n. Fortunately, this can be done relatively easily using Big O
notation, which expresses worst-case complexity as a function of n, as n gets arbitrarily large.
Complexity is an upper bound for the number of steps an algorithm requires, as a function of
the input size. In Big O notation, we denote the complexity of a function as O(f (n)), where
f (n) is a function without constant factors or lower-order terms. We’ll see some examples of
how this works, as follows.

The following code is O(1), because it executes a constant number of operations.

int a = 5;
int b = 7;
int c = 4;
int d = a + b + c + 153;

Input and output operations are also assumed to be O(1).

In the following examples, we assume that the code inside the loops is O(1).
The time complexity of loops is the number of iterations that the loop runs multiplied by

the amount of operations per iteration. The following code examples are both O(n).

for(int i = 1; i <= n; i++){

// constant time code here

}

10

CHAPTER 3. TIME/SPACE COMPLEXITY AND ALGORITHM ANALYSIS

11

int i = 0;
while(i < n){

// constant time node here
i++;

}

Because we ignore constant factors and lower order terms, for loops where we loop up to

5n + 17 or n + 457737 would also be O(n):

We can find the time complexity of multiple loops by multiplying together the time
complexities of each loop. The following example is O(nm), because the outer loop runs O(n)
iterations and the inner loop O(m).

for(int i = 1; i <= n; i++){

for(int j = 1; j <= m; j++){

// constant time code here

}

}

If an algorithm contains multiple blocks, then its time complexity is the worst time
complexity out of any block. For example, if an algorithm has an O(n) block and an O(n2)
block, the overall time complexity is O(n2).

Functions of different variables generally are not considered lower-order terms with respect
to each other, so we must include both terms. For example, if an algorithm has an O(n2)
block and an O(nm) block, the overall time complexity would be O(n2 + nm).

3.2 Common Complexities and Constraints

Complexity factors that come from some common algorithms and data structures are as

follows:

• Mathematical formulas that just calculate an answer: O(1)

• Unordered set/map: O(1) per operation

• Binary search: O(log n)

• Ordered set/map or priority queue: O(log n) per operation

• Prime factorization of an integer, or checking primality or compositeness of an integer:

√

O(

n)

• Reading in n items of input: O(n)

• Iterating through an array or a list of n elements: O(n)

CHAPTER 3. TIME/SPACE COMPLEXITY AND ALGORITHM ANALYSIS

12

• Sorting: usually O(n log n) for default sorting algorithms (mergesort, for example

Collections.sort or Arrays.sort on objects)

• Java Quicksort (Arrays.sort function on primitives on pathological worst-case data

sets, don’t use this in CodeForces rounds. . . ): O(n2).

• Iterating through all subsets of size k of the input elements: O(nk). For example,

iterating through all triplets is O(n3).

• Iterating through all subsets: O(2n)

• Iterating through all permutations: O(n!)

Here are conservative upper bounds on the value of n for each time complexity. You can
probably get away with more than this, but this should allow you to quickly check whether
an algorithm is viable.

n

Possible complexities

n ≤ 10
n ≤ 20
n ≤ 80
n ≤ 400
n ≤ 7500
n ≤ 7 · 104
n ≤ 5 · 105
n ≤ 5 · 106
n ≤ 1012
n ≤ 1018 O(log2 n), O(log n), O(1)

O(n!), O(n7), O(n6)
O(2n · n), O(n5)
O(n4)
O(n3)
O(n2)
√
n)
O(n
O(n log n)
O(n)
n log n), O(

O(

n)

√

√

Chapter 4

Built-in Data Structures

A data structure determines how data is stored. (is it sorted? indexed? what operations
does it support?) Each data structure supports some operations efficiently, while other
operations are either inefficient or not supported at all. This chapter introduces the data
structures in the Java standard library that are frequently used in competitive programming.
Java default Collections data structures are designed to store any type of object. However,
we usually don’t want this; instead, we want our data structures to only store one type of
data, like integers, or strings. We do this by putting the desired data type within the <>
brackets when declaring the data structure, as follows:

ArrayList<String> list = new ArrayList<String>();

This creates an ArrayList structure that only stores objects of type String.
For our examples below, we will primarily use the Integer data type, but note that you
can have Collections of any object type, including Strings, other Collections, or user-defined
objects.

Collections data types always contain an add method for adding an element to the
collection, and a remove method which removes and returns a certain element from the
collection. They also support the size() method, which returns the number of elements in
the data structure, and the isEmpty() method, which returns true if the data structure is
empty, and false otherwise.

4.1 Dynamic Arrays

You’re probably already familiar with regular (static) arrays. Now, there are also dynamic
arrays (ArrayList in Java) that support all the functions that a normal array does, and can
resize itself to accommodate more elements. In a dynamic array, we can also add and delete
elements at the end in O(1) time.

However, we need to be careful that we only add elements to the end of the ArrayList;

insertion and deletion in the middle of the ArrayList is O(n).

13

CHAPTER 4. BUILT-IN DATA STRUCTURES

14

ArrayList<Integer> list = new ArrayList<Integer>(); // declare the dynamic array
list.add(2); // [2]
list.add(3); // [2, 3]
list.add(7); // [2, 3, 7]
list.add(5); // [2, 3, 7, 5]
list.set(1, 4); // sets element at index 1 to 4 -> [2, 4, 7, 5]
list.remove(1); // removes element at index 1 -> [2, 7, 5]
// this remove method is O(n); to be avoided
list.add(8); // [2, 7, 5, 8]
list.remove(list.size()-1); // [2, 7, 5]
// here, we remove the element from the end of the list; this is O(1).
System.out.println(list.get(2)); // 5

To iterate through a static or dynamic array, we can use either the regular for loop or the

for-each loop.

Arrays.sort(arr) is used to sort a static array, and Collections.sort(list) a dynamic

array. The default sort function sorts the array in ascending order.

In array-based contest problems, we’ll use one-, two-, and three-dimensional static arrays
most of the time. However, we can also have static arrays of dynamic arrays, dynamic arrays
of static arrays, and so on. Usually, the choice between a static array and a dynamic array is
just personal preference.

4.2 Stacks and the Various Types of Queues

Stacks

A stack is a Last In First Out (LIFO) data structure that supports three operations:
push, which adds an element to the top of the stack, pop, which removes an element from
the top of the stack, and peek, which retrieves the element at the top without removing it,
all in O(1) time. Think of it like a real-world stack of papers.

Stack<Integer> s = new Stack<Integer>();
s.push(1); // [1]
s.push(13); // [1, 13]
System.out.println(s.size()); // 2
s.pop(); // [1]
System.out.println(s.peek()); // 1
s.pop(); // []
System.out.println(s.size()); // 0

Queues

A queue is a First In First Out (FIFO) data structure that supports three operations of
add, insertion at the back of the queue, poll, deletion from the front of the queue, and peek,

CHAPTER 4. BUILT-IN DATA STRUCTURES

15

which retrieves the element at the front without removing it, all in O(1) time. Java doesn’t
actually have a Queue class; it’s only an interface. The most commonly used implementation
is the LinkedList, declared as follows: Queue q = new LinkedList();.

Queue<Integer> q = new LinkedList<Integer>();
q.add(1); // [1]
q.add(3); // [3, 1]
q.poll(); // [3]
q.add(4); // [4, 3]
System.out.println(q.size()); // 2
System.out.println(q.peek()); // 4

Deques

A deque (usually pronounced “deck”) stands for double ended queue and is a combination
of a stack and a queue, in that it supports O(1) insertions and deletions from both the
front and the back of the deque. In Java, the deque class is called ArrayDeque. The four
methods for adding and removing are addFirst, removeFirst, addLast, and removeLast.
The methods for retrieving the first and last elements without removing are peekFirst and
peekLast.

ArrayDeque<Integer> deque = new ArrayDeque<Integer>();
deque.addFirst(1); // [1]
deque.addLast(2); // [1, 2]
deque.addFirst(3); // [3, 1, 2]
deque.addFirst(4); // [3, 1, 2, 4]
deque.removeLast(); // [3, 1, 2]
deque.removeFirst(); // [1, 2]

Priority Queues

A priority queue supports the following operations:

insertion of elements, deletion of
the element considered highest priority, and retrieval of the highest priority element, all in
O(log n) time according to the number of elements in the priority queue. Priority is based on
a comparator function, but by default the lowest element is at the front of the priority queue.
The priority queue is one of the most important data structures in competitive programming,
so make sure you understand how and when to use it. By default, the Priority Queue puts
the lowest element at the front of the queue.

PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
pq.add(4); // [4]
pq.add(2); // [4, 2]
pq.add(1); // [4, 2, 1]

CHAPTER 4. BUILT-IN DATA STRUCTURES

16

pq.add(3); // [4, 3, 2, 1]
System.out.println(pq.peek()); // 1
pq.poll(); // [4, 3, 2]
pq.poll(); // [4, 3]
pq.add(5); // [5, 4, 3]

4.3 Sets and Maps

A set is a collection of objects that contains no duplicates. There are two types of sets:

unordered sets (HashSet in Java), and ordered set (TreeSet in Java).

Unordered Sets

The unordered set works by hashing, which is assigning a usually-unique code to every
variable/object which allows insertions, deletions, and searches in O(1) time, albeit with a
high constant factor, as hashing requires a large constant number of operations. However,
as the name implies, elements are not ordered in any meaningful way, so traversals of an
unordered set will return elements in some arbitrary order. The operations on an unordered
set are add, which adds an element to the set if not already present, remove, which deletes
an element if it exists, and contains, which checks whether the set contains that element.

HashSet<Integer> set = new HashSet<Integer>();
set.add(1); // [1]
set.add(4); // [1, 4] in arbitrary order
set.add(2); // [1, 4, 2] in arbitrary order
set.add(1); // [1, 4, 2] in arbitrary order
// the add method did nothing because 1 was already in the set
System.out.println(set.contains(1)); // true
set.remove(1); // [2, 4] in arbitrary order
System.out.println(set.contains(5)); // false
set.remove(0); // [2, 4] in arbitrary order
// if the element to be removed does not exist, nothing happens

for(int element : set){

System.out.println(element);

}
// You can iterate through an unordered set, but it will do so in arbitrary

(cid:44)→

order

Ordered Sets

The second type of set data structure is the ordered or sorted set. Insertions, deletions,
and searches on the ordered set require O(log n) time, based on the number of elements

CHAPTER 4. BUILT-IN DATA STRUCTURES

17

in the set. As well as those supported by the unordered set, the ordered set also allows
four additional operations: first, which returns the lowest element in the set, last, which
returns the highest element in the set, lower, which returns the greatest element strictly less
than some element, and higher, which returns the least element strictly greater than it.

TreeSet<Integer> set = new TreeSet<Integer>();
set.add(1); // [1]
set.add(14); // [1, 14]
set.add(9); // [1, 9, 14]
set.add(2); // [1, 2, 9, 14]
System.out.println(set.higher(7)); // 9
System.out.println(set.higher(9)); // 14
System.out.println(set.lower(5)); // 2
System.out.println(set.first()); // 1
System.out.println(set.last()); // 14
set.remove(set.higher(6)); // [1, 2, 14]
System.out.println(set.higher(23); // ERROR, no such element exists

The primary limitation of the ordered set is that we can’t efficiently access the kth largest
element in the set, or find the number of elements in the set greater than some arbitrary x.
These operations can be handled using a data structure called an order statistic tree, but
that is beyond the scope of this book.

Maps

A map is a set of ordered pairs, each containing a key and a value. In a map, all keys
are required to be unique, but values can be repeated. Maps have three primary methods:
one to add a specified key-value pairing, one to retrieve the value for a given key, and one
to remove a key-value pairing from the map. Like sets, maps can be unordered (HashSet
in Java) or ordered (TreeSet in Java). In an unordered map, hashing is used to support
O(1) operations. In an ordered map, the entries are sorted in order of key. Operations are
O(log n), but accessing or removing the next key higher or lower than some input k is also
supported.

Unordered Maps

In the unordered map, the put(key, value) method assigns a value to a key and places
the key and value pair into the map. The get(key) method returns the value associated with
the key. The containsKey(key) method checks whether a key exists in the map. Lastly,
remove(key) removes the map entry associated with the specified key. All of these operations
are O(1), but again, due to the hashing, this has a high constant factor.

HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
map.put(1, 5); // [(1, 5)]
map.put(3, 14); // [(1, 5); (3, 14)]

CHAPTER 4. BUILT-IN DATA STRUCTURES

18

map.put(2, 7); // [(1, 5); (3, 14); (2, 7)]
map.remove(2); // [(1, 5); (3, 14)]
System.out.println(map.get(1)); // 5
System.out.println(map.containsKey(7)); // false
System.out.println(map.containsKey(1)); // true

Ordered Maps

The ordered map supports all of the operations that an unordered map supports, and
additionally supports firstKey/firstEntry and lastKey/lastEntry, returning the lowest
key/entry and the highest key/entry, as well as higherKey/higherEntry and lowerKey/
lowerEntry, returning the lowest key/entry strictly higher than the specified key, or the
highest key/entry strictly lower than the specified key.

TreeMap<Integer, Integer> map = new TreeMap<Integer, Integer>();
map.put(3, 5); // [(3, 5)]
map.put(11, 4); // [(3, 5); (11, 4)]
map.put(10, 491); // [(3, 5); (10, 491); (11, 4)]
System.out.println(map.firstKey()); // 3
System.out.println(map.firstEntry()); // (3, 5)
System.out.println(map.lastEntry()); // (11, 4)
System.out.println(map.higherEntry(4)); // (10, 491)
map.remove(11); // [(3, 5); (10, 491)]
System.out.println(map.lowerKey(4)); // 3
System.out.println(map.lowerKey(3)); // ERROR

A note on unordered sets and maps: In USACO contests, they’re generally fine, but in
CodeForces contests, you should always use sorted sets and maps. This is because the built-in
hashing algorithm is vulnerable to pathological data sets causing abnormally slow runtimes,
in turn causing failures on some test cases.

Multisets

Lastly, there is the multiset, which is essentially a sorted set that allows multiple copies
of the same element. While there is no Multiset in Java, we can implement one using the
TreeMap from values to their respective frequencies. We declare the TreeMap implementation
globally so that we can write functions for adding and removing elements from it.

static TreeMap<Integer, Integer> multiset = new TreeMap<Integer, Integer>();

public static void main(String[] args){

...

}

CHAPTER 4. BUILT-IN DATA STRUCTURES

19

static void add(int x){

if(multiset.containsKey(x)){

multiset.put(x, multiset.get(x) + 1);

} else {

multiset.put(x, 1);

}

}

static void remove(int x){

multiset.put(x, multiset.get(x) - 1);
if(multiset.get(x) == 0){

multiset.remove(x);

}

}

The first, last, higher, and lower operations still function as intended; just use firstKey,

lastKey, higherKey, and lowerKey respectively.

4.4 Problems

Again, note that CSES’s grader is very slow, so don’t worry if you encounter a Time
Limit Exceeded verdict; as long as you pass the majority of test cases within the time limit,
you can consider the problem solved, and move on.

1. CSES Problem Set Task 1621: Distinct Numbers

https://cses.fi/problemset/task/1621

2. CSES Problem Set Task 1084: Apartments
https://cses.fi/problemset/task/1084

3. CSES Problem Set Task 1091: Concert Tickets
https://cses.fi/problemset/task/1091

4. CSES Problem Set Task 1163: Traffic Lights
https://cses.fi/problemset/task/1163

5. CSES Problem Set Task 1164: Room Allocation
https://cses.fi/problemset/task/1164

Part II

Bronze

20

Chapter 5

Simulation

In many problems, we can simply simulate what we’re told to do by the problem statement.
Since there’s no formal algorithm involved, the intent of the problem is to assess competence
with one’s programming language of choice and knowledge of built-in data structures. At
least in USACO Bronze, when a problem statement says to find the end result of some
process, or to find when something occurs, it’s usually sufficient to simulate the process.

5.1 Example 1

Alice and Bob are standing on a 2D plane. Alice starts at the point (0, 0), and Bob
starts at the point (R, S) (1 ≤ R, S ≤ 1000). Every second, Alice moves M units to the
right, and N units up. Every second, Bob moves P units to the left, and Q units down.
(1 ≤ M, N, P, Q ≤ 10). Determine if Alice and Bob will ever meet (be at the same point at
the same time), and if so, when.
INPUT FORMAT:
The first line of the input contains R and S.
The second line of the input contains M , N , P , and Q.
OUTPUT FORMAT:
Please output a single integer containing the number of seconds after the start at which Alice
and Bob meet. If they never meet, please output −1.
Solution
We can simulate the process. After inputting the values of R, S, M , N , P , and Q, we can
keep track of Alice’s and Bob’s x- and y-coordinates. To start, we initialize variables for their
respective positions. Alice’s coordinates are initially (0, 0), and Bob’s coordinates are (R, S)
respectively. Every second, we increase Alice’s x-coordinate by M and her y-coordinate by
N , and decrease Bob’s x-coordinate by P and his y-coordinate by Q.

Now, when do we stop? First, if Alice and Bob ever have the same coordinates, then we
are done. Also, since Alice strictly moves up and to the right and Bob strictly moves down
and to the left, if Alice’s x- or y-coordinates are ever greater than Bob’s, then it is impossible
for them to meet. Example code will be displayed below (Here, as in other examples, input
processing will be omitted):

21

CHAPTER 5. SIMULATION

22

int ax = 0; int ay = 0; // alice's x and y coordinates
int bx = r; int by = s; // bob's x and y coordinates
int t = 0; // keep track of the current time
while(ax < bx && ay < by){

// every second, update alice's and bob's coordinates and the time
ax += m; ay += n;
bx -= p; by -= q;
t++;

}
if(ax == bx && ay == by){ // if they are in the same location

out.println(t); // they meet at time t

} else {

out.println(-1); // they never meet

}
out.close(); // flush the output

5.2 Example 2

There are N buckets (5 ≤ N ≤ 105), each with a certain capacity Ci (1 ≤ Ci ≤ 100). One
day, after a rainstorm, each bucket is filled with Ai units of water (1 ≤ Ai ≤ Ci). Charlie
then performs the following process: he pours bucket 1 into bucket 2, then bucket 2 into
bucket 3, and so on, up until pouring bucket N − 1 into bucket N . When Charlie pours
bucket B into bucket B + 1, he pours as much as possible until bucket B is empty or bucket
B + 1 is full. Find out how much water is in each bucket once Charlie is done pouring.
INPUT FORMAT:
The first line of the input contains N .
The second line of the input contains the capacities of the buckets, C1, C2, . . . , Cn.
The third line of the input contains the amount of water in each bucket A1, A2, . . . , An.
OUTPUT FORMAT:
Please print one line of output, containing N space-separated integers: the final amount of
water in each bucket once Charlie is done pouring.
Solution:
Once again, we can simulate the process of pouring one bucket into the next. The amount of
water poured from bucket B to bucket B + 1 is the smaller of the amount of water in bucket
B (after all previous operations have been completed) and the remaining space in bucket
B + 1, which is CB+1 − AB+1. We can just handle all of these operations in order, using an
array C to store the maximum capacities of each bucket, and an array A to store the current
water level in each bucket, which we update during the process. Example code is below (note
that arrays are zero-indexed, so the indices of our buckets go from 0 to N − 1 rather than
from 1 to N ).

CHAPTER 5. SIMULATION

23

for(int i = 0; i < n-1; i++){

int amt = Math.min(A[i], C[i+1]-A[i+1]);
// the amount of water to be poured is the lesser of
// the amount of water in the current bucket and
// the amount of additional water that the next bucket can hold
A[i] -= amt; // remove the amount from the current bucket
A[i+1] += amt; // add it to the next bucket

}

for(int i = 0; i < n; i++){

pw.print(A[i] + " ");
// print the amount of water in each bucket at the end

}
pw.println(); // print newline
pw.close(); // flush the output

5.3 Problems

1. USACO December 2018 Bronze Problem 1: Mixing Milk

http://www.usaco.org/index.php?page=viewproblem2&cpid=855

2. USACO December 2017 Bronze Problem 3: Milk Measurement

http://www.usaco.org/index.php?page=viewproblem2&cpid=761

3. USACO US Open 2017 Bronze Problem 1: The Lost Cow

http://www.usaco.org/index.php?page=viewproblem2&cpid=735

4. USACO February 2017 Bronze Problem 3: Why Did the Cow Cross the Road III

http://www.usaco.org/index.php?page=viewproblem2&cpid=713

5. USACO January 2016 Bronze Problem 3: Mowing the Field

http://www.usaco.org/index.php?page=viewproblem2&cpid=593

6. USACO December 2017 Bronze Problem 2: The Bovine Shuffle
http://usaco.org/index.php?page=viewproblem2&cpid=760

7. USACO February 2016 Bronze Problem 2: Circular Barn

http://usaco.org/index.php?page=viewproblem2&cpid=616

Chapter 6

Complete Search

In many problems (especially in Bronze), it’s sufficient to check all possible cases in
the solution space, whether it be all elements, all pairs of elements, or all subsets, or all
permutations. Unsurprisingly, this is called complete search (or brute force), because it
completely searches the entire solution space.

6.1 Example 1

You are given N (3 ≤ N ≤ 5000) integer points on the coordinate plane. Find the square
of the maximum Euclidean distance (aka length of the straight line) between any two of the
points.
INPUT FORMAT:
The first line contains an integer N .
The second line contains N integers, the x-coordinates of the points: x1, x2, . . . , xn (−1000 ≤
xi ≤ 1000).
The third line contains N integers, the y-coordinates of the points: y1, y2, . . . , yn (−1000 ≤
yi ≤ 1000).
OUTPUT FORMAT:
Print one integer, the square of the maximum Euclidean distance between any two of the
points.
Solution:
We can brute-force every pair of points and find the square of the distance between them,
by squaring the formula for Euclidean distance: distance2 = (x2 − x1)2 + (y2 − y1)2. Thus,
we store the coordinates in arrays X[] and Y[], such that X[i] and Y[i] are the x- and
y-coordinates of the ith point, respectively. Then, we iterate through all possible pairs of
points, using a variable max to store the maximum square of distance between any pair seen
so far, and if the square of the distance between a pair is greater than our current maximum,

24

CHAPTER 6. COMPLETE SEARCH

25

we set our current maximum to it.

Algorithm: Finds the maximum Euclidean distance between any two of the given
points

Function maxDist

: points an array of n ordered pairs

Input
Output : the maximum Euclidean distance between any two of the points
max ← 0
for i ← 1 to n do

for j ← i + 1 to n do

if dist(points[i], points[j])2 > max then
max ← dist(points[i], points[j])2

end

end

end
return max

int max = 0; // storing the current maximum
for(int i = 0; i < n; i++){ // for each first point

for(int j = i+1; j < n; j++){ // for each second point

int dx = x[i] - x[j];
int dy = y[i] - y[j];
max = Math.max(max, dx*dx + dy*dy);
// if the square of the distance between the two points is greater than
// our current maximum, then update the maximum

}

}
pw.println(max);

A couple notes: first, since we’re iterating through all pairs of points, we start the j loop
from j = i + 1 so that point i and point j are never the same point. Furthermore, it makes
it so that each pair is only counted once. In this problem, it doesn’t matter whether we
double-count pairs or whether we allow i and j to be the same point, but in other problems
where we’re counting something rather than looking at the maximum, it’s important to be
careful that we don’t overcount. Secondly, the problem asks for the square of the maximum
Euclidean distance between any two points. Some students may be tempted to maintain the
maximum distance in a variable, and then square it at the end when outputting. However,
the problem here is that while the square of the distance between two integer points is always
an integer, the distance itself isn’t guaranteed to be an integer. Thus, we’ll end up shoving a
non-integer value into an integer variable, which truncates the decimal part. Using a floating
point variable isn’t likely to work either, due to precision errors (use of floating point decimals
should generally be avoided when possible).

CHAPTER 6. COMPLETE SEARCH

26

6.2 Generating Permutations

A permutation is a reordering of a list of elements. Some problems will ask for an
ordering of elements that satisfies certain conditions. In these problems, if N ≤ 10, we can
probably iterate through all permutations and check each permutation for validity. For a list
of N elements, there are N ! ways to permute them, and generally we’ll need to read through
each permutation once to check its validity, for a time complexity of O(N · N !).

In Java, we’ll have to implement this ourselves, which is called Heap’s Algorithm (no
relation to the heap data structure). What’s going to be in the check function depends on
the problem, but it should verify whether the current permutation satisfies the constraints
given in the problem.

As an example, here are the permutations generated by Heap’s Algorithm for [1, 2, 3]:

[1, 2, 3], [2, 1, 3], [3, 1, 2], [1, 3, 2], [2, 3, 1], [3, 2, 1]

Algorithm: Iterate over all permutations of a given input array, performing some
action on each permutation

Function generatePermutations

Input : An array arr, and its length k
if k = 1 then

process the current permutation

else

generatePermutations (arr, k − 1)
for i ← 0 to k − 1 do
if k is even then

swap indices i and k − 1 of arr

else

swap indices 0 and k − 1 of arr

end
generatePermutations (arr, k − 1)

end

end

Code for iterating over all permutations is as follows:

// this method is called with k equal to the length of arr
static void generate(int[] arr, int k){

if(k == 1){

check(arr); // check the current permutation for validity

} else {

generate(arr, k-1);
for(int i = 0; i < k-1; i++){

if(k % 2 == 0){

swap(arr, i, k-1);
// swap indices i and k-1 of arr

CHAPTER 6. COMPLETE SEARCH

27

} else {

swap(arr, 0, k-1);
// swap indices 0 and k-1 of arr

}
generate(arr, k-1);

}

}

}

6.3 Problems

1. USACO February 2020 Bronze Problem 1: Triangles

http://usaco.org/index.php?page=viewproblem2&cpid=1011

2. USACO January 2020 Bronze Problem 2: Photoshoot

http://www.usaco.org/index.php?page=viewproblem2&cpid=988
(Hint: Figure out what exactly you’re complete searching)

3. USACO December 2019 Bronze Problem 1: Cow Gymnastics

http://usaco.org/index.php?page=viewproblem2&cpid=963
(Hint: Brute force over all possible pairs)

4. USACO February 2016 Bronze Problem 1: Milk Pails

http://usaco.org/index.php?page=viewproblem2&cpid=615

5. USACO January 2018 Bronze Problem 2: Lifeguards

http://usaco.org/index.php?page=viewproblem2&cpid=784
(Hint: Try removing each lifeguard one at a time).

6. USACO December 2019 Bronze Problem 2: Where Am I?

http://usaco.org/index.php?page=viewproblem2&cpid=964
(Hint: Brute force over all possible substrings)

7. (Permutations) USACO December 2019 Bronze Problem 3: Livestock Lineup

http://usaco.org/index.php?page=viewproblem2&cpid=965

8. (Permutations) CSES Problem Set Task 1624: Chessboard and Queens

https://cses.fi/problemset/task/1624

9. USACO US Open 2016 Bronze Problem 3: Field Reduction

http://www.usaco.org/index.php?page=viewproblem2&cpid=641
(Hint: For this problem, you can’t do a full complete search; you have to do a reduced
search)

10. USACO December 2018 Bronze Problem 3: Back and Forth

http://www.usaco.org/index.php?page=viewproblem2&cpid=857
(This problem is relatively hard)

Chapter 7

Additional Bronze Topics

7.1 Square and Rectangle Geometry

The extent of “geometry” problems on USACO Bronze are usually quite simple and
limited to intersections and unions of squares and rectangles. These usually only include two
or three squares or rectangles, in which case you can simply draw out cases on paper, which
should logically lead to a solution.

In Java, the Rectangle class may be of use for finding intersections and unions of

rectangles.

Here are some of the functions that the Rectangle class has:

• Find whether a certain point or rectangle is contained within another rectangle

• Find the intersection or union of two rectangles

• Translate, scale, or shrink rectangles

For exact details and documentation, refer to the Rectangle class page on the official

javadoc: https://docs.oracle.com/javase/7/docs/api/java/awt/Rectangle.html

The problems given at the end of the chapter should encompass all the techniques you

need to know for geometry problems in the Bronze division.

7.2 Ad-hoc

Ad-hoc problems are problems that don’t fall into any standard algorithmic category
with well known solutions. They are usually unique problems intended to be solved with
unconventional techniques. In ad-hoc problems, it’s helpful to look at the constraints given in
the problem and devise potential time complexities of solutions; this, combined with details
in the problem statement itself, may give an outline of the solution.

Unfortunately, since ad-hoc problems don’t have solutions consisting of well known
algorithms, we can’t systematically teach you how to do them. The best way of learning how
to do ad-hoc is to practice. Of course, the problem solving intuition from math contests (if
you did them) is quite helpful, but otherwise, you can develop this intuition from practicing
ad-hoc problems.

28

CHAPTER 7. ADDITIONAL BRONZE TOPICS

29

While solving these problems, make sure to utilize what you’ve learned about the built-in
data structures and algorithmic complexity analysis, from chapters 2, 3, and 4. Since ad-hoc
problems comprise a significant portion of bronze problems, we’ve included a large selection
of them below for your practice.

7.3 Problems

Square and Rectangle Geometry

1. USACO December 2017 Bronze Problem 1: Blocked Billboard

http://usaco.org/index.php?page=viewproblem2&cpid=759

2. USACO December 2018 Bronze Problem 1: Blocked Billboard II
http://usaco.org/index.php?page=viewproblem2&cpid=783

3. CodeForces Round 587 (Div. 3) Problem C: White Sheet
https://codeforces.com/contest/1216/problem/C

4. USACO December 2016 Bronze Problem 1: Square Pasture

http://usaco.org/index.php?page=viewproblem2&cpid=663

Ad-hoc problems

5. USACO January 2016 Bronze Problem 1: Promotion Counting
http://usaco.org/index.php?page=viewproblem2&cpid=591

6. USACO January 2020 Bronze Problem 1: Word Processor

http://usaco.org/index.php?page=viewproblem2&cpid=987

7. USACO US Open 2019 Bronze Problem 1: Bucket Brigade

http://usaco.org/index.php?page=viewproblem2&cpid=939

8. USACO January 2018 Bronze Problem 3: Out of Place

http://usaco.org/index.php?page=viewproblem2&cpid=785

9. USACO December 2016 Bronze Problem 2: Block Game

http://usaco.org/index.php?page=viewproblem2&cpid=664

10. USACO February 2020 Bronze Problem 3: Swapity Swap

http://usaco.org/index.php?page=viewproblem2&cpid=1013
(This problem is quite hard for bronze.)

11. USACO February 2018 Bronze Problem 1: Teleportation

http://usaco.org/index.php?page=viewproblem2&cpid=807

12. USACO February 2018 Bronze Problem 2: Hoofball

http://usaco.org/index.php?page=viewproblem2&cpid=808

CHAPTER 7. ADDITIONAL BRONZE TOPICS

30

13. USACO US Open 2019 Bronze Problem 3: Cow Evolution

http://usaco.org/index.php?page=viewproblem2&cpid=941
(Warning: This problem is extremely difficult for bronze.)

Part III

Silver

31

Chapter 8

Sorting and comparators

8.1 Comparators

Java has built-in functions for sorting: Arrays.sort(arr) for arrays, and Collections.
sort(list) for ArrayLists. However, if we use custom objects, or if we want to sort elements
in a different order, then we’ll need to use a Comparator.

Normally, sorting functions rely on moving objects with a lower value ahead of objects
with a higher value if sorting in ascending order, and vice versa if in descending order. This
is done through comparing two objects at a time. What a Comparator does is compare two
objects as follows, based on our comparison criteria:

• If object x is less than object y, return a negative number

• If object x is greater than object y, return a positive number

• If object x is equal to object y, return 0.

In addition to returning the correct number, comparators should also satisfy the following

conditions:

• The function must be consistent with respect to reversing the order of the arguments:
if compare(x, y) is positive, then compare(y, x) should be negative and vice versa

• The function must be transitive. If compare(x, y) > 0 and compare(y, z) > 0, then
compare(x, z) > 0. Same applies if the compare functions return negative numbers.

• Equality must be consistent.

If compare(x, y) = 0, then compare(x, z) and
compare(y, z) must both be positive, both negative, or both zero. Note that they
don’t have to be equal, they just need to have the same sign.

Java has default functions for comparing ints, longs, and doubles. The Integer.compare(),
Long.compare(), and Double.compare() functions take two arguments x and y and compare
them as described above.

Now, there are two ways of implementing this in Java: Comparable, and Comparator.
They essentially serve the same purpose, but Comparable is generally easier and shorter to

32

CHAPTER 8. SORTING AND COMPARATORS

33

code. Comparable is a function implemented within the class containing the custom object,
while Comparator is its own class. For our example, we’ll use a Person class that contains a
person’s height and weight, and sort in ascending order by height.

If we use Comparable, we’ll need to put implements Comparable<Person> into the
heading of the class. Furthermore, we’ll need to implement the compareTo method. Essentially,
compareTo(x) is the compare function that we described above, with the object itself as the
first argument: compare(self, x).

static class Person implements Comparable<Person>{

int height, weight;
public Person(int h, int w){

height = h; weight = w;

}
public int compareTo(Person p){

return Integer.compare(height, p.height);

}

}

When using Comparable, we can just call Arrays.sort(arr) or Collections.sort(list)

on the array or list as usual.

If instead we choose to use Comparator, we’ll need to declare a second Comparator class,

and then implement that:

static class Person{

int height, weight;
public Person(int h, int w){

height = h; weight = w;

}

}
static class Comp implements Comparator<Person>{
public int compare(Person a, Person b){

return Integer.compare(a.height, b.height);

}

}

When using Comparator, the syntax for using the built-in sorting function requires
a second argument: Arrays.sort(arr, new Comp()), or Collections.sort(list, new
Comp()).

If we instead wanted to sort in descending order, this is also very simple. Instead of the
comparing function returning Integer.compare(x, y) of the arguments, it should instead
return -Integer.compare(x, y).

CHAPTER 8. SORTING AND COMPARATORS

34

8.2 Sorting by Multiple Criteria

Now, suppose we wanted to sort a list of Persons in ascending order, primarily by height
and secondarily by weight. We can do this quite similarly to how we handled sorting by one
criterion earlier. What the compareTo function needs to do is to compare the weights if the
heights are equal, and otherwise compare heights, as that’s the primary sorting criterion.

static class Person implements Comparable<Person>{

int height, weight;
public Person(int h, int w){

height = h; weight = w;

}
public int compareTo(Person p){
if(height == p.height){

return Integer.compare(weight, p.weight);

} else {

return Integer.compare(height, p.height);

}

}

}

Sorting with more criteria is done similarly.
An alternative way of representing custom objects is with arrays. Instead of using a custom
object to store data about each person, we can simply use int[], where each int array is of
size 2, and stores pairs of height, weight, probably in the form of a list like ArrayList<int[]>.
Since arrays aren’t objects in the usual sense, we need to use Comparator. Example for
sorting by the same two criteria as above:

static class Comp implements Comparator<int[]>{

public int compare(int[] a, int[] b){

if(a[0] == b[0]){

return Integer.compare(a[1], b[1]);

} else {

return Integer.compare(a[0], b[0]);

}

}

}

I don’t recommend using arrays to represent objects, mostly because it’s confusing, but

it’s worth noting that some competitors do this.

8.3 Problems

1. USACO US Open 2018 Silver Problem 2: Lemonade Line

http://www.usaco.org/index.php?page=viewproblem2&cpid=835

CHAPTER 8. SORTING AND COMPARATORS

35

2. CodeForces Round 633 (Div. 2) Problem B: Sorted Adjacent Differences

https://codeforces.com/problemset/problem/1339/B

3. CodeForces Round 579 (Div. 3) Problem E: Boxers

https://codeforces.com/problemset/problem/1203/E

4. USACO January 2019 Silver Problem 3: Mountain View

http://www.usaco.org/index.php?page=viewproblem2&cpid=896

5. USACO US Open 2016 Silver Problem 1: Field Reduction
http://www.usaco.org/index.php?page=open16results

Chapter 9

Greedy Algorithms

Greedy algorithms are algorithms that select the most optimal choice at each step, instead
of looking at the solution space as a whole. This reduces the problem to a smaller problem at
each step. However, as greedy algorithms never recheck previous steps, they sometimes lead
to incorrect answers. Moreover, in a certain problem, there may be more than one possible
greedy algorithm; usually only one of them is correct. This means that we must be extremely
careful when using the greedy method. However, when they are correct, greedy algorithms
are extremely efficient.

Greedy is not a single algorithm, but rather a way of thinking that is applied to problems.
There’s no one way to do greedy algorithms. Hence, we use a selection of well-known examples
to help you understand the greedy paradigm.

Usually, when using a greedy algorithm, there is a heuristic or value function that

determines which choice is considered most optimal.

9.1

Introductory Example: Studying Algorithms

Steph wants to improve her knowledge of algorithms over winter break. She has a total of
X (1 ≤ X ≤ 104) minutes to dedicate to learning algorithms. There are N (1 ≤ N ≤ 100)
algorithms, and each one of them requires ai (1 ≤ ai ≤ 100) minutes to learn. Find the
maximum number of algorithms she can learn.

The solution is quite simple. The first observation we make is that Steph should prioritize
learning algorithms from easiest to hardest; in other words, start with learning the algorithm
that requires the least amount of time, and then choose further algorithms in increasing order
of time required. Let’s look at the following example:

X = 15,

N = 6,

ai = {4, 3, 8, 4, 7, 3}

After sorting the array, we have {3, 3, 4, 4, 7, 8}. Within the maximum of 15 minutes, Steph
can learn four algorithms in a total of 3 + 3 + 4 + 4 = 14 minutes. The implementation
of this algorithm is very simple. We sort the array, and then take as many elements as
possible while the sum of times of algorithms chosen so far is less than X. Sorting the array
takes O(N log N ) time, and iterating through the array takes O(N ) time, for a total time
complexity of O(N log N ).

36

CHAPTER 9. GREEDY ALGORITHMS

37

// read in the input, store the algorithms in int[] algorithms
Arrays.sort(algorithms);
int minutes = 0; // number of minutes used so far
int i = 0;
while(minutes + algorithms[i] <= x){

// while there is enough time, learn more algorithms
minutes += algorithms[i];
i++;

}
pw.println(i); // print the ans
pw.close();

9.2 Example: The Scheduling Problem

There are N events, each described by their starting and ending times. Jason would like
to attend as many events as possible, but he can only attend one event at a time, and if he
chooses to attend an event, he must attend the entire event. Traveling between events is
instantaneous.

Earliest Ending Next Event (Correct)

The correct approach to this problem is to always select the next possible event that ends

as soon as possible.

A brief explanation of correctness is as follows. If we have two events E1 and E2, with
E2 ending later than E1, then it is always optimal to select E1. This is because selecting E1
gives us more choices for future events. If we can select an event to go after E2, then that
event can also go after E1, because E1 ends first. Thus, the set of events that can go after E2
is a subset of the events that can go after E1, making E1 the optimal choice.

For the following code, let’s say we have the array events of events, which each contain a
start and an end point. We’ll be using the following static class to store each event (a review
of the previous chapter!)

static class Event implements Comparable<Event>{

int start; int end;
public Event(int s, int e){
start = s; end = e;

}
public int compareTo(Event e){

CHAPTER 9. GREEDY ALGORITHMS

38

return Integer.compare(this.end, e.end);

}

}

// read in the input, store the events in Event[] events.
Arrays.sort(events); // sorts by comparator we defined above
int currentEventEnd = -1; // end of event currently attending
int ans = 0; // how many events were attended?
for(int i = 0; i < n; i++){ // process events in order of end time

if(events[i].start >= currentEventEnd){ // if event can be attended
// we know that this is the earliest ending event that we can attend
// because of how the events are sorted
currentEventEnd = events[i].end;
ans++;

}

}
pw.println(ans);
pw.close();

Earliest Starting Next Event (Incorrect)

To emphasize the importance of selecting the right criteria, we review an incorrect solution
that always selects the next possible event that begins as soon as possible. Let’s look at the
following example, where the selected events are highlighted in red:

In this case, the greedy algorithm selects to attend only one event. However, the optimal

solution would be the following:

9.3 Failure Cases of Greedy Algorithms

We’ll provide a few common examples of when greedy fails, so that you can avoid falling

into obvious traps and wasting time getting wrong answers in contest.

CHAPTER 9. GREEDY ALGORITHMS

39

Coin Change

This problem gives several coin denominations, and asks for the minimum number of
coins needed to make a certain value. The greedy algorithm of taking the largest possible
coin denomination that fits in the remaining capacity can be used to solve this problem only
in very specific cases (it can be proven that it works for the American as well as the Euro
coin systems). However, it doesn’t work in the general case.

Knapsack

The knapsack problem gives a number of items, each having a weight and a value, and
we want to choose a subset of these items. We are limited to a certain weight, and we want
to maximize the value of the items that we take.

Let’s take the following example, where we have a maximum capacity of 4:

Item Weight Value Value Per Weight

A
B
C

3
2
2

18
10
10

6
5
5

If we use greedy based on highest value first, we choose item A and then we are done, as
we don’t have remaining weight to fit either of the other two. Using greedy based on value
per weight again selects item A and then quits. However, the optimal solution is to select
items B and C, as they combined have a higher value than item A alone. In fact, there is no
working greedy solution. The solution to this problem uses dynamic programming, which is
beyond the scope of this book.

9.4 Problems

1. USACO December 2015 Silver Problem 2: High Card Wins

http://usaco.org/index.php?page=viewproblem2&cpid=571

2. USACO February 2018 Silver Problem 1: Rest Stops

http://www.usaco.org/index.php?page=viewproblem2&cpid=810

3. USACO February 2017 Silver Problem 1: Why Did The Cow Cross The Road

http://www.usaco.org/index.php?page=viewproblem2&cpid=714

Chapter 10

Graph Theory

Graph theory is one of the most important topics at the Silver level and above. Graphs
can be used to represent many things, from images to wireless signals, but one of the simplest
analogies is to a map. Consider a map with several cities and highways connecting the cities.
Some of the problems relating to graphs are:

• If we have a map with some cities and roads, what’s the shortest distance I have to

travel to get from point A to point B?

• Consider a map of cities and roads. Is city A connected to city B? Consider a region to
be a group of cities such that each city in the group can reach any other city in said
group, but no other cities. How many regions are in this map, and which cities are in
which region?

10.1 Graph Basics

Graphs are made up of nodes and edges, where nodes are connected by edges. Graphs
can have either weighted edges, in which each edge has a certain length, or unweighted, in
which case all edges have the same length. Edges are either directed, which means they can
be traveled upon in one direction, or undirected, which means that they can be traveled
upon in both directions.

4

2

6

5

1

3

5

5

2

1

4

4

2

−1

2

3

3

5

6

Figure 10.1: An undirected unweighted graph (left) and a directed weighted graph (right)

40

CHAPTER 10. GRAPH THEORY

41

A connected component is a set of nodes within which any node can reach any other
node. For example, in this graph, nodes 1, 2, and 3 are a connected component, nodes 4 and
5 are a connected component, and node 6 is its own component.

3

1

2

6

4

5

Figure 10.2: Connected components in a graph

10.2 Trees

A tree is a special type of graph satisfying two constraints: it is acyclic, meaning there
are no cycles, and the number of edges is one less than the number of nodes. Trees satisfy
the property that for any two nodes A and B, there is exactly one way to travel between A
and B.

1

6

3

7

2

5

4

Figure 10.3: A tree graph

The root of a tree is the one vertex that is placed at the top, and is where we usually
start our tree traversals from. Usually, problems don’t tell us where the tree is rooted at, and
it usually doesn’t matter either; trees can be arbitrarily rooted (here, we’ll use the convention
of rooting at index 1).

Every node except the root node has a parent. The parent of a node s is defined as
follows: On the path from the root to s, the node that is one closer to the root than s is the
parent of s. Each non-root node has a unique parent.

Child nodes are the opposite. They lie one farther away from the root than their parent
node. Unlike parent nodes, these are not unique. Each node can have arbitrarily many child
nodes, and nodes can also have zero children. If a node s is the parent of a node t, then t is
the child node of s.

A leaf node is a node that has no children. Leaf nodes can be identified quite easily

because there is only one edge adjacent to them.

CHAPTER 10. GRAPH THEORY

42

In our example tree above, node 1 is the root, nodes 2 and 3 are children of node 1, nodes
4, 5, and 6 are children of 2, and node 7 is the child of 3. Nodes 4, 5, 6, and 7 are leaf nodes.

10.3 Graph Representations

Usually, in a graph with N edges and M edges, we’ll number the nodes 0 through N − 1.
If the problem gives the nodes numbered 1 through N , simply decrease the endpoint node
numbers of edges by 1 as you input them, in order to accommodate zero-indexing of arrays.
However, in problem statements, input and output, the node labels will usually be 1 through
N , so that’s what we’ll use in our examples.

Graphs will usually be given in an input format similar to the following: First, integers
N and M denoting the number of nodes and edges, respectively. Then, M lines, each with
integers a and b, representing edges; if the graph is undirected, then there is an edge between
nodes a and b, and if the graph is directed, then there is an edge from a to b.

For example, the input below would be for the following graph (without the comments):

6 7 // 6 nodes, 7 edges
// the following lines represent edges.
1 2
1 4
1 5
2 3
2 4
3 5
4 6

4

2

6

5

1

3

Figure 10.4: The graph corresponding to the above input

Graphs can be represented in three ways: Adjacency List, Adjacency Matrix, and Edge
List. Regardless of how the graph is represented, it’s important that it be stored globally
and statically, because we need to be able to access it from outside the main method, and
call the graph searching and traversal methods on it.

CHAPTER 10. GRAPH THEORY

43

Adjacency List

The adjacency list is the most commonly used method of storing graphs. When we use
DFS, BFS, Dijkstra’s, or other single-source graph traversal algorithms, we’ll want to use an
adjacency list. In an adjacency list, we maintain a length N array of lists. Each list stores
the neighbors of one node. In an undirected graph, if there is an edge between node a and
node b, we add a to the list of b’s neighbors, and b to the list of a’s neighbors. In a directed
graph, if there is an edge from node a to node b, we add b to the list of a’s neighbors, but
not vice versa.

4

4

2

2

1

3

6

5

3

4

1

3

9

5

Figure 10.5: An example of a weighted undirected graph

Adjacency list representation of the graph in fig. 10.5:

adj[0]
adj[1]
adj[2]
adj[3]
adj[4]
adj[5]

(1, 9), (3, 4), (4, 3)
(0, 9), (2, 5), (3, 2)
(1, 5), (4, 4), (5, 1)
(0, 4), (1, 2), (5, 3)
(0, 3), (2, 4)
(2, 1), (3, 3)

Adjacency lists take up O(N + M ) space, because each node corresponds to one list of
neighbors, and each edge corresponds to either one or two endpoints (directed vs undirected).
In an adjacency list, we can find (and iterate through) the neighbors of a node easily. Hence,
the adjacency list is the graph representation we should be using most of the time.

Often, we’ll want to maintain a array visited, which is a boolean array representing
whether each node has been visited. When we visit node k (0-indexed), we mark visited[k]
true, so that we know not to return to it.

Code for setting up an adjacency list is as follows:

static int n, m; // number of nodes and edges
static ArrayList<Integer>[] adj; // adjacency list

public static void main(String[] args){

n = r.nextInt(); // reads in number of nodes
m = r.nextInt(); // reads in number of edges

CHAPTER 10. GRAPH THEORY

44

adj = new ArrayList[n]; // adjacency list
// Java doesn't allow ArrayList<Integer>[n]
boolean[] visited = new boolean[n];
for(int i = 0; i < n; i++){

adj[i] = new ArrayList<Integer>(); // initializes the ArrayLists

}
for(int i = 0; i < m; i++){ // reading in each of the m edges

int a = r.nextInt()-1; // we subtract 1 because our array is

zero-indexed

(cid:44)→
int b = r.nextInt()-1;
adj[a].add(b);
adj[b].add(a); // omit this line if the graph is directed

}

}

If we’re dealing with a weighted graph, we’ll declare an Edge class or struct that stores
two variables: the second endpoint of the edge, and the weight of the edge, and we store an
array of lists of edges rather than an array of lists of integers.

static class Edge{

int to;
int weight;
public Edge(int to, int weight){

this.to = to;
this.edge = edge;

}

}

Adjacency Matrix

Another way of representing graphs is the adjacency matrix, which is an N by N 2-
dimensional array that stores for each pair of indices (a, b), stores whether there is an
edge between a and b. Start by initializing every entry in the matrix to zero (this is done
automatically in Java), and then for undirected graphs, for each edge between indices a and
b, set adj[a][b] and adj[b][a] to 1 (if unweighted) or the edge weight (if weighted). If
the graph is directed, for an edge from a to b, only set adj[a][b].

CHAPTER 10. GRAPH THEORY

45

4

4

2

2

1

3

6

5

3

4

1

3

9

5

Figure 1.5 repeated for convenience

Adjacency matrix representation of the graph in fig. 1.5:

× 0 1 2 3 4 5
0 0 9 0 4 3 0
1 9 0 5 2 0 0
2 0 5 0 0 4 1
3 4 2 0 0 0 3
4 3 0 4 0 0 0
5 0 0 1 3 0 0

At the Silver level, we generally won’t be using the adjacency matrix much, but it’s helpful
to know if it does come up. The primary use of the adjacency matrix is the Floyd-Warshall
algorithm, which is beyond the scope of this book.

Code for setting up an adjacency matrix is as follows:

static int n, m; // number of nodes and edges
static int[][] adj; // adj matrix

public static void main(String[] args){

n = r.nextInt();
m = r.nextInt();
adj = new int[n][n];
for(int i = 0; i < m; i++){ // read in each of the m edges

int a = r.nextInt()-1;
int b = r.nextInt()-1;
adj[a][b] = 1; // or set equal to w if graph is weighted
adj[b][a] = 1; // or set equal to w if graph is weighted;
// ignore above line if graph is directed

}

}

CHAPTER 10. GRAPH THEORY

46

Edge List

The last graph representation is the edge list. Usually, we use this in weighted undirected
graphs when we want to sort the edges by weight (for DSU, for example; see section 10.6).
In the edge list, we simply store a single list of all the edges, in the form (a, b, w) where a
and b are the nodes that the edge connects, and w is the edge weight. Note that in an edge
list, we do NOT add each edge twice; there is only one place for us to add the edges, so we
only do so once.

4

4

2

2

1

3

6

5

3

4

1

3

9

5

Figure 1.5 repeated for convenience

Edge list representation of the graph in fig. 1.5:

(0, 1, 9), (0, 3, 4), (0, 4, 3), (1, 3, 2), (3, 5, 3), (2, 4, 4), (2, 1, 5), (2, 5, 1)

We’ll need an edge class, such as the following:

static class Edge implements Comparable<Edge>{

int a, b, w;
public Edge(int a, int b, int w){

this.a = a;
this.b = b;
this.w = w;

}
public int compareTo(Edge e){ // sort order is ascending, by weight
// to sort in descending order, just negate the value of the compare

function.
return Integer.compare(w, e.w);

(cid:44)→

}

}

Code for the edge list is as follows, using the above edge class:

static int n, m; // number of nodes and edges
static ArrayList<Edge> edges;

CHAPTER 10. GRAPH THEORY

47

public static void main(String[] args){

n = r.nextInt();
m = r.nextInt();
edges = new ArrayList<Edge>();
for(int i = 0; i < m; i++){ // for each of the m edges

int a = r.nextInt()-1;
int b = r.nextInt()-1;
// subtract 1 to maintain zero-indexing of vertices
int w = r.nextInt();
edges.add(new Edge(a, b, w)); // add the edge to the list

}
Collections.sort(edges);

}

10.4 Graph Traversal Algorithms

Graph traversal is the process of visiting or checking each vertex in a graph. This is useful
when we want to determine which vertices can be visited, whether there exists a path from
one vertex to another, and so forth. There are two algorithms for graph traversal, namely
depth-first search (DFS) and breadth-first search (BFS).

Depth-first search

Depth-first search continues down a single path to the end, then it backtracks to check
other vertices. Depth-first search will process all nodes that are reachable (connected by
edges) to the starting node. Let’s look at an example of how this works. Depth first-search
can start at any node, but by convention we’ll start the search at node 1. We’ll use the
following color scheme: blue for nodes we have already visited, red for nodes we are currently
processing, and black for nodes that have not been visited yet.

The DFS starts from node 1 and then goes to node 2, as it’s the only neighbor of node 1:

1

2

5

3

4

1

2

5

3

4

Now, the DFS goes to node 3 and then 4, following a single path to the end until it has no
more nodes to process:

CHAPTER 10. GRAPH THEORY

48

1

2

5

3

4

1

2

5

3

4

Lastly, the DFS backtracks to visit node 5, which was skipped over previously.

1

2

5

3

4

Depth-first search is implemented recursively because it allows for much simpler and shorter
code. The algorithm is as follows:

Algorithm: Recursive implementation for depth-first traversal of a graph

Function DFS

Input : start, the 0-indexed number of the starting vertex
visted(start) ← true
foreach vertex k adjacent to start do

if visited(k) is false then

DFS (k)

end

end

Code:

static void dfs(int node){

visited[node] = true;
for(int next : adj[node]){
if(!visited[next]){
dfs(next);

}

}

}

Breadth-first search

Breadth-first search visits nodes in order of distance away from the starting node; it first

visits all nodes that are one edge away, then all nodes that are two edges away, and so on.
Let’s use the same example graph that we used earlier: The BFS starts from node 1 and

then goes to node 2, as it’s the only neighbor of node 1:

CHAPTER 10. GRAPH THEORY

49

1

2

5

3

4

1

2

5

3

4

Now, the BFS goes to node 3, and then node 5, because both of them are two edges away
from node 1:

1

2

5

3

4

1

2

5

3

4

Lastly, the BFS visits node 4, which is farthest.

1

2

5

3

4

The breadth-first search algorithm cannot be implemented recursively, so it’s significantly
longer. Thus, when both BFS and DFS work, DFS is usually the better option.

BFS can be used for finding the distance away from a starting node for all nodes in an

unweighted graph, as we show below:

CHAPTER 10. GRAPH THEORY

50

The algorithm is as follows:

Algorithm: Breadth-first traversal of a graph

Function BFS

Input : start, the 0-indexed number of the starting vertex
foreach vertex v do
dist[v] ← −1
visited[v] ← false

end
dist[start] ← 0
Let q be a queue of integers
Add start to q
while q is not empty do

Pop the first element from q, call it v
foreach neighbor u of v do

if node u has not yet been visited then

dist[u] ← dist[v] + 1
Add u to q

end

end

end

Once the BFS finishes, the array dist contains the distances from the start node to each

node.

Example code is below. Note that the array dist[] is initially filled with −1’s to denote

that none of the nodes have been processed yet.

static void bfs(int k){

Arrays.fill(dist, -1); // fill distance array with -1's
Queue<Integer> q = new LinkedList<Integer>();
dist[k] = 0;
q.add(k);
while(!q.isEmpty()){

int v = q.poll();
for(int e : adj[v]){

if(dist[e] == -1){

dist[e] = dist[v] + 1;
q.add(e);

}

}

}

}

CHAPTER 10. GRAPH THEORY

51

Iterative DFS

If you encounter stack overflows while using recursive DFS, you can write an iterative

DFS, which is just BFS but with nodes stored on a stack rather than a queue.

10.5 Floodfill

Floodfill is an algorithm that identifies and labels the connected component that a
particular cell belongs to, in a multi-dimensional array. Essentially, it’s DFS, but on a grid,
and we want to find the connected component of all the connected cells with the same number.
For example, let’s look at the following grid and see how floodfill works, starting from the
top-left cell. The color scheme will be the same: red for the node currently being processed,
blue for nodes already visited, and uncolored for nodes not yet visited.

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
1
2

2
1
2

2
1
2

2
1
2

2
1
2

2
1
2

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

As opposed to an explicit graph where the edges are given, a grid is an implicit graph.
This means that the neighbors are just the nodes directly adjacent in the four cardinal
directions.

Usually, grids given in problems will be N by M , so the first line of the input contains the
numbers N and M . In this example, we will use an two-dimensional integer array to store the
grid, but depending on the problem, a two-dimensional character array or a two-dimensional
boolean array may be more appropriate. Then, there are N rows, each with M numbers
containing the contents of each square in the grid. Example input might look like the following
(varies between problems):

CHAPTER 10. GRAPH THEORY

52

3 4
1 1 2 1
2 3 2 1
1 3 3 3

And we’ll want to input the grid as follows:

static int[][] grid;
static int n, m;

public static void main(String[] args){

int n = r.nextInt();
int m = r.nextInt();
grid = new int[n][m];
for(int i = 0; i < n; i++){

for(int j = 0; j < m; j++){

grid[i][j] = r.nextInt();

}

}

}

When doing floodfill, we will maintain an N × M array of booleans to keep track of
which squares have been visited, and a global variable to maintain the size of the current
component we are visiting. Make sure to store the grid, the visited array, dimensions, and
the current size variable globally.

This means that we want to recursively call the search function from the squares above,
below, and to the left and right of our current square. The algorithm to find the size of a
connected component in a grid using floodfill is as follows (we’ll also maintain a 2d visited

CHAPTER 10. GRAPH THEORY

53

array):

Algorithm: Floodfill of a graph

Function main

// Input/output, global vars, etc hidden
for i ← 0 to n − 1 do

for j ← 0 to m − 1 do

if the square at (i, j) is not visited then

currentSize ← 0
floodfill(i, j, grid[i][j])
Process the connected component

end

end

end

Function floodfill

: r, c, color

Input
// row and column index of starting square, target color
if r or c is out of bounds then

return

end
if the cell at (r, c) is the wrong color then

return

end
if the square at (r, c) has already been visited then

return

end
visited[r][c] ← true
currentSize ← currentSize + 1
floodfill(r, c + 1, color)
floodfill(r, c − 1, color)
floodfill(r − 1, c, color)
floodfill(r + 1, c, color)

The code below shows the global/static variables we need to maintain while doing floodfill,

and the floodfill algorithm itself.

static int[][] grid; // the grid itself
static int n, m; // grid dimensions, rows and columns
static boolean[][] visited; // keeps track of which nodes have been visited
static int currentSize = 0; // reset to 0 each time we start a new component

public static void main(String[] args){

/**
* input code and other problem-specific stuff here
*/

CHAPTER 10. GRAPH THEORY

54

for(int i = 0; i < n; i++){

for(int j = 0; j < m; j++){
if(!visited[i][j]){

currentSize = 0;
floodfill(i, j, grid[i][j]);
// start a floodfill if the square hasn't already been visited,
// and then store or otherwise use the component size
// for whatever it's needed for

}

}

}

}

static void floodfill(int r, int c, int color){

if(r < 0 || r >= n || c < 0 || c >= m) return; // if outside grid
if(grid[r][c] != color) return; // wrong color
if(visited[r][c]) return; // already visited this square
visited[r][c] = true; // mark current square as visited
currentSize++; // increment the size for each square we visit
// recursively call floodfill for neighboring squares
floodfill(r, c+1, color);
floodfill(r, c-1, color);
floodfill(r-1, c, color);
floodfill(r+1, c, color);

}

10.6 Disjoint-Set Data Structure

Let’s say we want to construct a graph, one edge at a time. We also want to be able to
add additional nodes, and query whether two nodes are connected. We can naively solve
this problem by adding the edges and running a floodfill each time, before finally checking
whether two nodes have the same color. This yields a time complexity of O(nm) for a graph
of n nodes and m edges.

However, we can do better than this using a data structure known as Disjoint-Set Union,

or DSU for short. This data structure supports two operations:

• Add an edge between two nodes.

• Check if two nodes are connected.

To achieve this, we store sets as trees, with the root of the tree representing the “parent”
of the set. Initially, we store each node as its own set. Then, we combine their sets when we
add an edge between two nodes. The image below illustrates this structure.

CHAPTER 10. GRAPH THEORY

55

In this graph, 1 is the parent of the set containing 3, 2, and 4.
To implement this, let’s store the parent of each node in the tree represented by that
node’s set. Then, to merge two sets, we set the parent of one tree’s root to the other tree’s
root, like so:

The following methods demonstrate this idea:

static int[] parent; //stores the parent nodes

static void initialize(int N){

for(int i = 0; i < N; i++){

parent[i] = i; //initially, the root of each set is the node itself

}

}

static int find(int x){ //finds the root of the set of x

if(x == parent[x]){ //if x is the parent of itself, it is the root

return x;

}
else{

return find(parent[x]); //otherwise, recurse to the parent of x

}

CHAPTER 10. GRAPH THEORY

56

}

static void union(int a, int b){ //merges the sets of a and b

int c = find(a); //find the root of a
int d = find(b); //find the root of b
if(c != d){

parent[d] = c; //merge the sets by setting the parent of d to c

}

}

However, this naive implementation of a DSU isn’t much better than simply running a
floodfill. As the recursing up the tree of a set to find it’s root can be time-consuming for
trees with long chains, the runtime ultimately degrades to still being O(nm) for n nodes and
m edges.

Now that we understand the general idea of a DSU, we can improve the runtime of this
implementation using an optimization known as path compression. The general idea is to
reassign nodes in the tree as you are recursively calling the find method to prevent long
chains from forming. Here is a rewritten find method representing this idea:

static int find(int x){
if(x == parent[x]){

return x;

}
else{

// we set the direct parent to the root of the set to reduce path length
return parent[x] = find(parent[x]);

}

}

The following image demonstrates how the tree with parent 1 is compressed after find(6)
is called. All of the bolded nodes in the final tree were visited during the recursive operation,
and now point to the root.

CHAPTER 10. GRAPH THEORY

57

With this new optimization, the runtime reduces to O(n log n), far better than our naive
algorithm. Further optimizations can reduce the runtime of DSU to nearly constant. However,
those techniques and the proof of complexity for these optimizations are both unnecessary for
and out of the scope of the USACO Silver division, so they will not be included in this book.

10.7 Bipartite Graphs

A bipartite graph is a graph such that each node can be colored in one of two colors,
such that no two adjacent nodes have the same color. For example, the following graph is
bipartite:

1

2

4

3

5

A graph is bipartite if and only if there are no cycles of odd length. For example, the

following graph is not bipartite, because it contains a cycle of length 3.

1

3

2

4

The following image depicts how a bipartite graph splits vertices into two “groups”

depending on their color.

CHAPTER 10. GRAPH THEORY

58

In order to check whether a graph is bipartite, we use a modified breadth-first search.

Algorithm: Bipartiteness check

Function bipartite

: a graph

Input
Output : whether the graph is bipartite or not
Assign color 1 to the starting vertex
// Use the following modified bfs
foreach vertex v processed in bfs do

d ← dist(start, v)
if d is odd then

Assign color 2 to vertex v

else

Assign color 1 to vertex v

end
foreach vertex w adjacent to v do

if w and v are the same color then
return false // not bipartite

end

end

end
return true // bipartite

10.8 Problems

DFS/BFS Problems

1. USACO January 2018 Silver Problem 3: MooTube

http://www.usaco.org/index.php?page=viewproblem2&cpid=788

CHAPTER 10. GRAPH THEORY

59

2. USACO December 2016 Silver Problem 3: Moocast

http://www.usaco.org/index.php?page=viewproblem2&cpid=668

3. USACO US Open 2016 Silver Problem 3: Closing the Farm

http://www.usaco.org/index.php?page=viewproblem2&cpid=644

DSU Problems

Many of these problems do not require DSU. However, they become much easier to do if

you understand it.

4. USACO US Open Silver Problem 3: The Moo Particle

http://usaco.org/index.php?page=viewproblem2&cpid=1040

5. USACO January 2018 Silver Problem 3: MooTube

http://www.usaco.org/index.php?page=viewproblem2&cpid=788

6. USACO December 2019 December Problem 3: Milk Visits

http://usaco.org/index.php?page=viewproblem2&cpid=968

7. USACO US Open 2016 Gold Problem 2: Closing the Farm

http://www.usaco.org/index.php?page=viewproblem2&cpid=646

8. USACO January Contest 2020 Silver Problem 3: Wormhole Sort

http://www.usaco.org/index.php?page=viewproblem2&cpid=992

Other Graph Problems

9. (Bipartite Graphs) USACO February 2019 Silver Problem 3: The Great Revegetation

http://www.usaco.org/index.php?page=viewproblem2&cpid=920

10. CodeForces Round 595 (Div. 3) Problem B2: Books Exchange
https://codeforces.com/problemset/problem/1249/B2

Chapter 11

Prefix Sums

11.1 Prefix Sums

Let’s say we have an integer array arr with N elements, and we want to process Q queries
to find the sum of the elements between two indices a and b, inclusive, with different values
of a and b for every query. For the purposes of this chapter, we will assume that the original
array is 1-indexed, meaning arr[0] = 0 (which is a dummy index), and the actual array
elements occupy indices 1 through N (this means that the array actually has length N + 1).

Let’s use the following example 1-indexed array arr, with N = 6:

Index i
arr[i]

0
0

1
1

2
6

3
4

4
2

5
5

6
3

Naively, for every query, we can iterate through all entries from index a to index b to add
them up. Since we have Q queries and each query requires a maximum of O(N ) operations
to calculate the sum, our total time complexity is O(N Q). For most problems of this nature,
the constraints will be N, Q ≤ 105, so N Q is on the order of 1010. This is not acceptable; it
will almost always exceed the time limit.

Instead, we can use prefix sums to process these array sum queries. We designate a prefix
sum array prefix[]. First, since we’re 1-indexing the array, set prefix[0] = 0, then for
indices k such that 1 ≤ k ≤ n, define the prefix sum array as follows:

prefix[k] =

k
(cid:88)

i=1

arr[i]

Basically, what this means is that the element at index k of the prefix sum array stores the
sum of all the elements in the original array from index 1 up to k. This can be calculated
easily in O(N ) by the following formula:

prefix[k] = prefix[k-1] + arr[k]

For the example case, our prefix sum array looks like this:

Index i
prefix[i]

0
0

1
1

2
7

3
11

4
13

5
18

6
21

60

CHAPTER 11. PREFIX SUMS

61

Now, when we want to query for the sum of the elements of arr between (1-indexed)

indices a and b inclusive, we can use the following formula:

b
(cid:88)

i=a

arr[i] =

b
(cid:88)

i=1

arr[i] −

a−1
(cid:88)

i=1

arr[i]

Using our definition of the elements in the prefix sum array, we have

b
(cid:88)

i=a

arr[i] = prefix[b] − prefix[a-1]

Since we are only querying two elements in the prefix sum array, we can calculate subarray
sums in O(1) per query, which is much better than the O(N ) per query that we had before.
Now, after an O(N ) preprocessing to calculate the prefix sum array, each of the Q queries
takes O(1) time. Thus, our total time complexity is O(N + Q), which should now pass the
time limit.

Let’s do an example query and find the subarray sum between indices a = 2 and b = 5,
inclusive, in the 1-indexed arr. From looking at the original array, we see that this is
(cid:80)5

i=2 arr[i] = 6 + 4 + 2 + 5 = 17.

Index i
arr[i]

0
0

1
1

2
6

3
4

4
2

5
5

6
3

Using prefix sums: prefix[5] − prefix[1] = 18 − 1 = 17.

Index i
prefix[i]

0
0

1
1

2
7

3
11

4
13

5
18

6
21

11.2 Two Dimensional Prefix Sums

Now, what if we wanted to process Q queries for the sum over a subrectangle of a N
rows by M columns matrix in two dimensions? Let’s assume both rows and columns are
1-indexed, and we use the following matrix as an example:

0
0
0
0
0

0
1
1
4
7

0
5
7
6
5

0
6
11
1
4

0
11
9
3
2

0
8
4
2
3

Naively, each sum query would then take O(N M ) time, for a total of O(QN M ). This is

too slow.

Let’s take the following example region, which we want to sum:

CHAPTER 11. PREFIX SUMS

62

0
0
0
0
0

0
1
1
4
7

0
5
7
6
5

0
6
11
1
4

0
11
9
3
2

0
8
4
2
3

Manually summing all the cells, we have a submatrix sum of 7 + 11 + 9 + 6 + 1 + 3 = 37.
The first logical optimization would be to do one-dimensional prefix sums of each row.
Then, we’d have the following row-prefix sum matrix. The desired subarray sum of each row
in our desired region is simply the green cell minus the red cell in that respective row. We do
this for each row, to get (28 − 1) + (14 − 4) = 37.

0
0
0
0
0

0
1
1
4
7

0
6
8
10
12

0
12
19
11
16

0
23
28
14
18

0
31
32
16
21

Now, if we wanted to find a submatrix sum, we could break up the submatrix into a
subarray for each row, and then add their sums, which would be calculated using the prefix
sums method described earlier. Since the matrix has N rows, the time complexity of this is
O(QN ). This is better, but still usually not fast enough.

To do better, we can do two-dimensional prefix sums. In our two dimensional prefix sum

array, we have

prefix[a][b] =

a
(cid:88)

b
(cid:88)

i=1

j=1

arr[i][j]

This can be calculated as follows for row index 1 ≤ i ≤ n and column index 1 ≤ j ≤ m:

prefix[i][j] = prefix[i-1][j] + prefix[i][j-1] − prefix[i-1][j-1] + arr[i][j]

The submatrix sum between rows a and A and columns b and B, can thus be expressed as
follows:

A
(cid:88)

B
(cid:88)

arr[i][j] = prefix[A][B] − prefix[a-1][B]

i=a

j=b

− prefix[A][b-1] + prefix[a-1][b-1]

Summing the blue region from above using the 2d prefix sums method, we add the value
of the green square, subtract the values of the red squares, and then add the value of the
gray square. In this example, we have 65 − 23 − 6 + 1 = 37, as expected.

0
0
0
0
0

0
1
2
6
13

0
6
14
24
36

0
12
31
42
58

0
23
51
65
83

0
31
63
79
100

Since no matter the size of the submatrix we are summing, we only need to access 4 values
of the 2d prefix sum array, this runs in O(1) per query after an O(N M ) preprocessing. This
is fast enough.

CHAPTER 11. PREFIX SUMS

11.3 Problems

63

1. USACO December 2015 Silver Problem 3: Breed Counting

http://usaco.org/index.php?page=viewproblem2&cpid=572

2. USACO January 2016 Silver Problem 2: Subsequences Summing to Sevens

http://usaco.org/index.php?page=viewproblem2&cpid=595

3. USACO December 2017 Silver Problem 1: My Cow Ate My Homework
http://www.usaco.org/index.php?page=viewproblem2&cpid=762

4. USACO January 2017 Silver Problem 2: Hoof, Paper, Scissors

http://www.usaco.org/index.php?page=viewproblem2&cpid=691

5. (2D Prefix Sums) USACO February 2019 Silver Problem 2: Painting the Barn

http://www.usaco.org/index.php?page=viewproblem2&cpid=919

Chapter 12

Binary Search

12.1 Binary Search on the Answer

You’re probably already familiar with the concept of binary searching for a number in
a sorted array. However, binary search can be extended to binary searching on the answer
itself. When we binary search on the answer, we start with a search space, where we know
the answer lies in. Then, each iteration of the binary search cuts the search space in half,
so the algorithm tests O(log N ) values, which is efficient and much better than testing each
possible value in the search space.

Similarly to how binary search on an array only works on a sorted array, binary search
on the answer only works if the answer function is monotonic. Let’s say we have a function
check(x) that returns true if the answer of x is possible, and false otherwise. Usually, in
such problems, we’ll want to find the maximum or minimum value of x such that check(x)
is true.

In order for binary search to work, the search space must look like something of the

following form, using a check function as we described above.

true true true true true false false false false

Then, we find the point at which true becomes false, using binary search.
Below, we present two algorithms for binary search. The first implementation may be
more intuitive, because it’s closer to the binary search most students learned, while the

64

CHAPTER 12. BINARY SEARCH

65

second implementation is shorter.

Algorithm: Binary searching for the answer

Function binarySearch1

left ← lower bound of search space
right ← upper bound of search space
ans ← −1
while left ≤ right do

mid ← (left + right)/2
if check(mid) then
left ← mid + 1
ans ← mid

else

right ← mid − 1

end
return ans

Algorithm: Binary searching for the answer

Function binarySearch2

pos ← 0
max ← upper bound of search space
for (a = max; a ≥ 1; a /= 2) do
while check(pos + a) do

pos ← pos + a

end

end
return pos

12.2 Example

Source: Codeforces Round 577 (Div. 2) Problem C
https://codeforces.com/contest/1201/problem/C

Given an array arr of n integers, where n is odd, we can perform the following operation
on it k times: take any element of the array and increase it by 1. We want to make the
median of the array as large as possible, after k operations.
Constraints: 1 ≤ n ≤ 2 · 105, 1 ≤ k ≤ 109 and n is odd.
The solution is as follows: we first sort the array in ascending order. Then, we binary
search for the maximum possible median. We know that the number of operations required
to raise the median to x increases monotonically as x increases, so we can use binary search.
For a given median value x, the number of operations required to raise the median to x is

n
(cid:88)

i=(n+1)/2

max(0, x − arr[i])

CHAPTER 12. BINARY SEARCH

66

If this value is less than or equal to k, then x can be the median, so our check function
returns true. Otherwise, x cannot be the median, so our check function returns false.

Solution code (using the second implementation of binary search):

static int n;
static long k;
static long[] arr;
public static void main(String[] args) {

n = r.nextInt(); k = r.nextLong();
arr = new long[n];
for(int i = 0; i < n; i++){

arr[i] = r.nextLong();

}
Arrays.sort(arr);

pw.println(search());
pw.close();

}

// binary searches for the correct answer
static long search(){

long pos = 0; long max = (long)2E9;
for(long a = max; a >= 1; a /= 2){

while(check(pos+a)) pos += a;

}
return pos;

}

// checks whether the number of given operations is sufficient
// to raise the median of the array to x
static boolean check(long x){

long operationsNeeded = 0;
for(int i = (n-1)/2; i < n; i++){

operationsNeeded += Math.max(0, x-arr[i]);

}
if(operationsNeeded <= k){ return true; }
else{ return false; }

}

12.3 Problems

1. USACO December 2018 Silver Problem 1: Convention

http://www.usaco.org/index.php?page=viewproblem2&cpid=858

CHAPTER 12. BINARY SEARCH

67

2. USACO January 2016 Silver Problem 1: Angry Cows

http://usaco.org/index.php?page=viewproblem2&cpid=594

3. USACO January 2017 Silver Problem 1: Cow Dance Show

http://www.usaco.org/index.php?page=viewproblem2&cpid=690

4. Educational Codeforces Round 60 Problem C: Magic Ship

https://codeforces.com/problemset/problem/1117/C (Also uses prefix sums)

5. USACO January 2020 Silver Problem 2: Loan Repayment

http://www.usaco.org/index.php?page=viewproblem2&cpid=991
(Warning: extremely difficult for silver)

Chapter 13

Elementary Number Theory

13.1 Prime Factorization

A number a is called a divisor or a factor of a number b if b is divisible by a, which means
that there exists some integer k such that b = ka. Conventionally, 1 and n are considered
divisors of n. A number n > 1 is prime if its only divisors are 1 and n. Numbers greater
than 1 that are not prime are composite.

Every number has a unique prime factorization: a way of decomposing it into a product

of primes, as follows:

n = p1

a1p2

a2 · · · pk

ak

where the pi are distinct primes and the ai are positive integers.

Now, we will discuss how to find the prime factorization of an integer.

Algorithm: Finds the prime factorization of a number

Function factor

: n, the number to be factorized
Input
Output : v, a list of all the prime factors
v ← empty list
for i ← 2 to (cid:98)

n(cid:99) do

√

while n is divisible by i do

n ← n/i
Add i to the list v

end

end
return v ;

√

√

This algorithm runs in O(

n) time, because the for loop checks divisibility for at most
n values. Even though there is a while loop inside the for loop, dividing n by i quickly
reduces the value of n, which means that the outer for loop runs less iterations, which actually
speeds up the code.

68

CHAPTER 13. ELEMENTARY NUMBER THEORY

69

Let’s look at an example of how this algorithm works, for n = 252.

i

n

2 252
2 126
63
2
21
3
7
3

v

{}
{2}
{2, 2}
{2, 2, 3}
{2, 2, 3, 3}

At this point, the for loop terminates, because i is already 3 which is greater than (cid:98)
7(cid:99). In
the last step, we add 7 to the list of factors v, because it otherwise won’t be added, for a
final prime factorization of {2, 2, 3, 3, 7}.

√

13.2 GCD and LCM

The greatest common divisor (GCD) of two integers a and b is the largest integer
that is a factor of both a and b. In order to find the GCD of two numbers, we use the
Euclidean Algorithm, which is as follows:

gcd(a, b) =

(cid:40)

a
gcd(b, a mod b)

b = 0
b (cid:54)= 0

This algorithm is very easy to implement using a recursive function, as follows:

public int gcd(int a, int b){
if(b == 0) return a;
return gcd(b, a % b);

}

Finding the GCD of two numbers can be done in O(log n) time, where n = min(a, b).

The least common multiple (LCM) of two integers a and b is the smallest integer

divisible by both a and b.

The LCM can easily be calculated from the following property with the GCD:

lcm(a, b) =

a · b
gcd(a, b)

If we want to take the GCD or LCM of more than two elements, we can do so two at a time,
in any order. For example,

gcd(a1, a2, a3, a4) = gcd(a1, gcd(a2, gcd(a3, a4)))

CHAPTER 13. ELEMENTARY NUMBER THEORY

70

13.3 Modular Arithmetic

In modular arithmetic, instead of working with integers themselves, we work with their
remainders when divided by m. We call this taking modulo m. For example, if we take
m = 23, then instead of working with x = 247, we use x mod 23 = 17. Usually, m will be a
large prime, given in the problem; the two most common values are 109 + 7, and 998 244 353.
Modular arithmetic is used to avoid dealing with numbers that overflow built-in data types,
because we can take remainders, according to the following formulas:

(a + b) mod m = (a mod m + b mod m) mod m
(a − b) mod m = (a mod m − b mod m) mod m

(a · b)

(mod m) = ((a mod m) · (b mod m)) mod m

ab mod m = (a mod m)b mod m

Under a prime moduli, division does exist; however it’s rarely used in problems and is

beyond the scope of this book.

13.4 Problems

1. CodeForces VK Cup 2012 Wildcard Round 1

https://codeforces.com/problemset/problem/162/C

Chapter 14

Additional Silver Topics

14.1 Two Pointers

The two pointers method iterates two pointers across an array, to track the start and end
of an interval, or two values in a sorted array that we are currently checking. Both pointers
are monotonic; meaning each pointer starts at one end of the array and only move in one
direction.

2SUM Problem

Given an array of N elements (1 ≤ N ≤ 105), find two elements that sum to X. We can
solve this problem using two pointers; sort the array, then set one pointer at the beginning
and one pointer at the end of the array. Then, we consider the sum of the numbers at the
indices of the pointers. If the sum is too small, advance the left pointer towards the right,
and if the sum is too large, advance the right pointer towards the left. Repeat until either
the correct sum is found, or the pointers meet (in which case there is no solution).

Let’s take the following example array, where N = 6 and X = 15

First, we sort the array:

1

7

11

10

5

13

1

5

7

10

11

13

We then place the left pointer at the start of the array, and the right pointer at the end

of the array.

1

5

7

10

11

13

Then, run and repeat this process: If the sum of the pointer elements is less than X,
move the left pointer one step to the right. If the sum is greater than X, move the right
pointer one step to the left. The example is as follows. First, the sum 1 + 13 = 14 is too
small, so we move the left pointer one step to the right.

1

5

7

10

11

13

71

CHAPTER 14. ADDITIONAL SILVER TOPICS

72

Now, 5 + 13 = 18 overshoots the sum we want, so we move the right pointer one step to

the left.

1

5

7

10

11

13

At this point we have 5 + 11 = 16, still too big. We continue moving the right pointer to

the left.

1

5

7

10

11

13

Now, we have the correct sum, and we are done.
Code is as follows:

int left = 0; int right = n-1;
while(left < right){

if(arr[left] + arr[right] == x){

break;

} else if(arr[left] + arr[right] < x){

left++;

} else {

right--;

}

}
// if left >= right after the loop ends, no answer exists.

Subarray Sum

Given an array of N (1 ≤ N ≤ 105) positive elements, find a contiguous subarray that

sums to X.

We can do this in a similar manner to how we did the 2SUM problem: except this time we
start both pointers at the left, and the pointers mark the beginning and end of the subarray
we are currently checking. We advance the right pointer one step to the right if the total of
the current subarray is too small, advance the left pointer one step to the right if the current
total is too large, and we are done when we find the correct total.

Maximum subarray sum

Another problem that isn’t quite solved by two pointers, but is somewhat related, is the

maximum subarray sum problem.

Given an array of N integers (1 ≤ N ≤ 105), which can be positive or negative, find the

maximum sum of a contiguous subarray.

We can solve this problem using Kadane’s algorithm, which works as follows: we iterate
through the elements of the array, and for each index i, we maintain the maximum subarray
sum of a subarray ending at i in the variable current, and the maximum subarray sum of a
subarray ending at or before i, in the variable best.

Example code is below.

CHAPTER 14. ADDITIONAL SILVER TOPICS

73

int best = 0; int current = 0;
for(int i = 0; i < n; i++){

current = Math.max(0, current + arr[i]);
best = Math.max(best, current);

}

14.2 Line Sweep

Line sweep is the technique of sorting a set of points or line segments and then processing
them in order (this usually means from left to right). The name line sweep comes from the
fact that we are sweeping an imaginary vertical line across the plane containing the points or
segments.

To describe this technique, we’ll be using the 2019 US Open problem, “Cow Steeplechase

II”.

http://usaco.org/index.php?page=viewproblem2&cpid=943
In this problem, we are given some line segments and asked to find one line segment and
remove it such that the resulting segments form no intersections. It is guaranteed that this is
always possible.

First of all, let’s observe it is sufficient to find any two line segments that intersect. Once
we have done this, the solution is guaranteed to be one of these two segments. Then, out of
the two, the segment with multiple intersections is the answer (because removing any other
segment decreases the number of intersections by at most 1, and only removing the segment
with multiple intersections ensures there are no intersections).

If both segments have one intersection, that means the intersect with each other, so we
should return the one with the smallest index (as per the problem statement). Now, the
problem reduces to two parts: checking if two line segments intersect, and processing the line
segments using a line sweep.

Checking If Two Segments Intersect

To check if two line segments intersect, we will use a fact from algebra: if we have the
points A = (xa, ya), B = (xb, yb), and C = (xc, yc), then the (signed) area of (cid:52)ABC, denoted
[ABC], is (xb − xa)(yc − ya) − (xc − xa)(yb − ya). This can be derived from the cross product
of the vectors

−→
AB and

−→
AC.

The part that will help us is the fact that this area is signed, which means that [ABC] is

positive if A, B, and C occur in counterclockwise order,

negative if A, B, and C occur in clockwise order, and

zero if A, B, and C are collinear.

Then, the key observation is that two segments P Q and XY intersect if the two conditions
hold:

CHAPTER 14. ADDITIONAL SILVER TOPICS

74

• [XP Q] and [Y P Q] have different signs

• [P XY ] and [QXY ] have different signs

For example, in the figure below, [X1P1Q1] and [Q1X1Y1] are positive because their vertices
occur in counterclockwise order, and [Y1P1Q1] and [P1X1Y1] are negative because their vertices
occur in clockwise order. Therefore, we know that X1Y1 and P1Q1 intersect. Similarly, on
the right, we know that [P2X2Y2] and [Q2X2Y2] have vertices both going in clockwise order,
so their signed areas are the same, and therefore P2Q2 and X2Y2 don’t intersect.

X1

P1

Q1

P2

X2

Q2

Y1

Y2

If the two conditions hold and some of the signs are zero, then this means that the segments
intersect at their endpoints. If the problem does not count these as intersecting, then consider
zero to have the same sign as both positive and negative.

However, there is a special case. If the signs of all four areas are zero, then all four points
lie on a line. To check if they intersect in this case, we just check whether one point is
between the others. In particular, we check if P or Q is on XY or if X is on P Q. We don’t
need to check if Y is on P Q because if the segments do intersect, we will have two instances
of points on the other segments.
Here’s a full implementation:

public class Point {
public int x, y;
public Point(int x, int y){
this.x = x; this.y = y;

}

}

public static int sign(Point A, Point B, Point C) {

int area = (B.x-A.x) * (C.y-A.y) - (C.x-A.x) * (B.y-A.y);
if (area > 0) return 1;
if (area < 0) return -1;
return 0;

}

public static boolean between(Point P, Point X, Point Y) {

return ((X.x <= P.x && P.x <= Y.x) || (Y.x <= P.x && P.x <= X.x))

&& ((X.y <= P.y && P.y <= Y.y) || (Y.y <= P.y && P.y <= X.y));

CHAPTER 14. ADDITIONAL SILVER TOPICS

75

}

public static boolean intersectQ(Point P, Point Q, Point X, Point Y) {

int[] signs = {sign(P, X, Y), sign(Q, X, Y), sign(X, P, Q), sign(Y, P, Q)};
if (signs[0] == 0 && signs[1] == 0 && signs[2] == 0 && signs[3] == 0)

return between(P, X, Y) || between(Q, X, Y) || between(X, P, Q);

return signs[0] != signs[1] && signs[2] != sign[3];

}

Processing Line Segments

Let’s break apart the N line segments into 2N events, one for each start and end point.
We’ll store whether some event is a start point or an end point, and which start points
correspond to each end point.

Then, we process the endpoints in order of x coordinate from left to right, maintaining a
set of currently processed segments, which is sorted by y. When we hit an endpoint, we either
add or remove a segment from the set, depending on whether we start or end a segment.
Every time we add a segment, we check it for intersection with the segment above it and the
segment below it. In addition, every time we remove a segment, we check the segment above
it and the segment below it for intersection. Once we find an intersection, we are done.

14.3 Bitwise Operations and Subsets

Binary Representations of Integers

In programming, numbers are stored as binary representations. This means that a number

x is represented as

n
(cid:88)

ai2i,

x =

i=0
where the ais are either 0 or 1 and n = (cid:98)log2 x(cid:99).

For example:

17 = 24 + 20 = 100012

Each digit in the binary representation, which is either 0 or 1, is called a bit.

Bitwise Operations

There are several binary operations on binary numbers called bitwise operations. These
operations are applied separately for each bit position. The common binary operations are
shown in table 14.1:

CHAPTER 14. ADDITIONAL SILVER TOPICS

76

Bit A Bit B A and B A or B A xor B

1
1
0
0

1
0
1
0

1
0
0
0

1
1
1
0

0
1
1
0

Table 14.1: The outputs of bitwise operations on two bits

The AND operation (&) returns 1 if and only if both bits are 1.

19 & 27

1 0 0 1 1 = 19
AN D 1 1 0 1 1 = 27
1 0 0 1 1 = 19

=

The OR operation (|) returns 1 if either bit is 1.

19 | 27

1 0 0 1 1 = 19
OR 1 1 0 1 1 = 27
= 1 1 0 1 1 = 27

The XOR operation (∧) returns 1 if and only if exactly one of the bits is 1.

19 ∧ 26

1 0 0 1 1 = 19
XOR 1 1 0 1 1 = 27
0 1 0 0 0 = 8

=

Finally, the left shift operator x << k multiplies x by 2k. Watch for overflow and use the

long data type if necessary. For example:

1 << 5 = 1 · 25 = 32
7 << 2 = 7 · 22 = 28

Exercises

Calculate by converting the numbers to binary, applying the bit operations, and then

converting back to decimal numbers:

(a) 19 & 34

(b) 14 | 29

(c) 10 ∧ 19

(d) 3 << 5

Answer: 2

Answer: 31

Answer: 25

Answer: 96

CHAPTER 14. ADDITIONAL SILVER TOPICS

77

Generating Subsets

Occasionally in a problem we’ll want to iterate through every possible subset of a given
set, either to find a subset that satisfies some condition, or to find the number of subsets that
satisfy some condition. Also, some problems might ask you to find the number of partitions
of a set into 2 groups that satisfy a certain condition. In this case, we will iterate through all
possible subsets, and check each subset for validity (first adding the non-selected elements to
the second subset if necessary).

In a set of N elements, there are 2N possible subsets, because for each of the N elements,
there are two choices: either in the subset, or not in the subset. Subset problems usually
require a time complexity of O(N · 2N ), because each subset has an average of O(N ) elements.
Now, let’s look at how we can generate the subsets. We can represent subsets as binary
numbers from 0 to 2N − 1. Then, each bit represents whether or not a certain element is in
the subset. Let’s look at an example set of a, b, c.

number binary

subset

0
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

{ }
{a}
{b}
{a, b}
{c}
{a, c}
{b, c}
{a, b, c}

Algorithm: The algorithm for generating all subsets of a given input array

Function generateSubsets

Input : An array arr, and its length n
for i ← 0 to 2n − 1 do

Declare list
for j = 0 to n-1 do

if the bit in the binary representation of i corresponding to 2j is 1 then

Add arr[j] to the list

end

end
Process the list

end

In the following code, our original set is represented by the array arr[] with length n.

int ans = 0;
for(int i = 0; i < (1<<n); i++){
// this loop iterates through the 2^n subsets, one by one.
// 1 << n is a shortcut for 2^n

CHAPTER 14. ADDITIONAL SILVER TOPICS

78

ArrayList<Integer> list = new ArrayList<Integer>();
// we create a new list for each subset and add
// the elements to it
for(int j = 0; j < n; j++){
if((i & (1 << j)) > 0){

// (1 << j) is the number where only the bit representing 2^j is 1.
list.add(arr[j]); // if the respective bit of i is 1,
// add that element to the list

}

}
if(valid(list)){

// code is not included here, but this method will vary depending on the
// problem to check if a certain subset is valid
// and increments the answer counter if so.
ans++;

}

}

14.4 Ad-hoc Problems

The silver division also often has ad hoc problems. They primarily rely on non-standard
algorithmic thinking and problem solving ability. You develop these skills by solving problems;
thus, we don’t have much content to teach you about ad hoc problems, but we provide a
selection of problems at the end of the chapter for your practice.

14.5 Problems

Two Pointers

1. CSES Problem Set Task 1640: Sum of Two Values

https://cses.fi/problemset/task/1640

2. CSES Problem Set Task 1643: Maximum Subarray Sum

https://cses.fi/problemset/task/1643

Line Sweep

3. USACO US Open 2019 Silver Problem 2: Cow Steeplechase II

http://usaco.org/index.php?page=viewproblem2&cpid=943

Subsets

4. (Subsets) CSES Problem Set Task 1623: Apple Division

https://cses.fi/problemset/task/1623

CHAPTER 14. ADDITIONAL SILVER TOPICS

79

Ad hoc problems

5. USACO February 2016 Silver Problem 1: Circular Barn

http://usaco.org/index.php?page=viewproblem2&cpid=618

6. USACO US Open 2019 Silver Problem 1: Left Out

http://www.usaco.org/index.php?page=viewproblem2&cpid=942

7. USACO February 2019 Silver Problem 1: Sleepy Cow Herding

http://www.usaco.org/index.php?page=viewproblem2&cpid=918

8. USACO January 2017 Silver Problem 3: Secret Cow Code

http://www.usaco.org/index.php?page=viewproblem2&cpid=692

9. USACO January 2020 Silver Problem 1: Berry Picking

http://www.usaco.org/index.php?page=viewproblem2&cpid=990

10. USACO December 2019 Silver Problem 2: Meetings

http://www.usaco.org/index.php?page=viewproblem2&cpid=967
(Warning: extremely difficult)

Part IV

Problem Set

80

Chapter 15

Parting Shots

You improve at competitive programming primarily by doing problems, so we leave you
with an extensive selection of CodeForces problems for your practice. This consists of five
problem sets of ten problems each, increasing in difficulty. The problems mostly use topics
covered in the book, but may require some ingenuity to find the solution. If you get stuck,
you can search for the editorial. Best of luck!

Set 1

1. https://codeforces.com/problemset/problem/1227/B

2. https://codeforces.com/problemset/problem/1196/B

3. https://codeforces.com/problemset/problem/1195/B

4. https://codeforces.com/problemset/problem/1294/B

5. https://codeforces.com/problemset/problem/1288/B

6. https://codeforces.com/problemset/problem/1293/A

7. https://codeforces.com/problemset/problem/1213/B

8. https://codeforces.com/problemset/problem/1207/B

9. https://codeforces.com/problemset/problem/1324/B

10. https://codeforces.com/problemset/problem/1327/A

Set 2

1. https://codeforces.com/problemset/problem/1182/B

2. https://codeforces.com/problemset/problem/1183/D

3. https://codeforces.com/problemset/problem/1183/C

4. https://codeforces.com/problemset/problem/1133/C

81

CHAPTER 15. PARTING SHOTS

82

5. https://codeforces.com/problemset/problem/1249/B2

6. https://codeforces.com/problemset/problem/1194/B

7. https://codeforces.com/problemset/problem/1271/C

8. https://codeforces.com/problemset/problem/1326/C

9. https://codeforces.com/problemset/problem/1294/C

10. https://codeforces.com/problemset/problem/1272/B

Set 3

1. https://codeforces.com/problemset/problem/1169/B

2. https://codeforces.com/problemset/problem/1102/D

3. https://codeforces.com/problemset/problem/978/F

4. https://codeforces.com/problemset/problem/1196/C

5. https://codeforces.com/problemset/problem/1154/D

6. https://codeforces.com/problemset/problem/1272/D

7. https://codeforces.com/problemset/problem/1304/C

8. https://codeforces.com/problemset/problem/1296/C

9. https://codeforces.com/contest/1263/problem/D

10. https://codeforces.com/contest/1339/problem/C

Set 4

1. https://codeforces.com/problemset/problem/1281/B

2. https://codeforces.com/problemset/problem/1196/D2

3. https://codeforces.com/problemset/problem/1165/D

4. https://codeforces.com/problemset/problem/1238/C

5. https://codeforces.com/problemset/problem/1234/D

6. https://codeforces.com/problemset/problem/1198/B

7. https://codeforces.com/problemset/problem/1198/A

8. https://codeforces.com/problemset/problem/1077/D

9. https://codeforces.com/problemset/problem/1303/C

10. https://codeforces.com/problemset/problem/1098/A

CHAPTER 15. PARTING SHOTS

83

Set 5

1. https://codeforces.com/problemset/problem/1185/D

2. https://codeforces.com/problemset/problem/1195/D2

3. https://codeforces.com/problemset/problem/1154/E

4. https://codeforces.com/contest/1195/problem/C

5. https://codeforces.com/problemset/problem/1196/E

6. https://codeforces.com/problemset/problem/1328/D

7. https://codeforces.com/problemset/problem/1253/D

8. https://codeforces.com/problemset/problem/1157/E

9. https://codeforces.com/problemset/problem/1185/C2

10. https://codeforces.com/problemset/problem/1209/D