Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 79,558 Bytes
08c8a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
1 

The Code Challenge Book 
How to Ace the Coding Bootcamp  
Technical Interview 

By 

Daniel Borowski 
Coderbyte 

	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 

Written	by:	Daniel	Borowski	|	Coderbyte	
Last	updated:	October	10th,	2016	

Cover	image:	By	R.	A.	Nonenmacher	(Own	work)	[GFDL	(http://www.gnu.org/copyleft/fdl.html)	or	CC	
BY-SA	4.0-3.0-2.5-2.0-1.0	(http://creativecommons.org/licenses/by-sa/4.0-3.0-2.5-2.0-1.0)],	via	
Wikimedia	Commons	[https://commons.wikimedia.org/wiki/File%3APascal's_Triangle_4_paths.svg]	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
TABLE	OF	CONTENTS	

1.  Introduction	

PART	1:	BACKGROUND	

1.1.  What	is	a	coding	bootcamp?			
1.2.  What	is	the	purpose	of	a	coding	challenge?			
1.3.  Difference	in	coding	challenges	for	coding	bootcamps	vs.	job	interviews		
1.4.  How	are	coding	challenges	related	to	engineering	problems?		
1.5.  What	you’ll	learn	in	this	book		
1.6. 

Skill	level	required	for	these	challenges		

2.  Basics	
2.1. 
2.2. 

Fundamental	data	structures	you’ll	need		
Big-O:	How	to	analyze	your	algorithms		

PART	2:	CHALLENGES	

Fizzbuzz		
Two	sum	problem	
Sum	nested	arrays		
Calculate	angle	on	clock		
Is	N	a	prime	number	
Implement	map	and	filter		
Remove	characters	from	array	from	string			 	
Check	if	valid	number	of	parenthesis		
First	non-repeating	character		

3.  Practice	
3.1. 
3.2. 
3.3. 
3.4. 
3.5. 
3.6. 
3.7. 
3.8. 
3.9. 
3.10.  Count	words	that	have	at	least	3	continuous	vowels			
3.11.  Remove	all	adjacent	matching	characters			
3.12.  Find	majority	element	(element	that	appears	more	than	n/2	times)			
3.13.  Switching	light	bulbs	problem			
3.14.  List	of	integers	that	overlap	in	two	ranges			
3.15.  Return	mean,	median,	and	mode	of	array				 	
3.16.  Encode	consonants	within	a	string			 	
3.17.  Convert	array	of	strings	into	an	object	
3.18.  Three	sum	problem	

PART	3:	GENERAL	INTERVIEW	TIPS	

4.  Resources			

4.1. 
4.2. 

Personal	help	 	
Interview	preparation	articles		

3 

		5	
		5	
		6	
		7	
		8	
		8	

10	
10	

13	
15	
17	
19	
21	
23	
27	
29	
31	
33	
35	
37	
40	
42	
44	
46	
50	
54	

58	
58	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
4 

PART	1	
BACKGROUND	

“Measuring	programming	progress	by	lines	of	code	is	like		
measuring	aircraft	building	progress	by	weight.”	

-	Bill	Gates	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
CHAPTER	1:	Introduction	

5 

1.1.  What	is	a	coding	bootcamp?	

A	coding	bootcamp	is	an	intensive	training	program	that	teaches	students	computer	programming	
over	the	span	of	several	weeks.	The	goal	of	these	bootcamps	is	to	condense	the	concepts	taught	in	a	
standard	college	computer	science	program	into	a	crash	course	that	focuses	explicitly	on	the	practical	
skills	and	knowledge	they	offer.	That	way,	students	are	prepared	for	software	engineering	jobs	
immediately	after	they	finish	the	program.	There	are	close	to	one	hundred	coding	bootcamps	in	the	
United	States	alone	that	focus	on	teaching	software	development,	data	science,	and	mobile	
application	development.[1]	And	it’s	not	just	the	U.S.	--	bootcamps	are	sprouting	up	all	over	the	world,	
in	countries	like	Portugal,	Poland,	France,	and	the	U.K.[2]	You	can	read	more	about	bootcamps	here:	
http://bit.ly/2eb7Xzf		

During	the	bootcamp,	students	follow	a	rigorous	schedule	that	typically	runs	over	the	course	of	8-

12	weeks.		It	includes	learning	to	code	in	a	specific	language,	learning	new	software	tools	and	
methodology,	studying	algorithms,	creating	projects,	working	in	groups,	and	other	activities	that	are	
designed	to	prepare	the	student	for	the	world	of	software	engineering.	On	average,	these	bootcamps	
cost	about	$12,000	for	the	whole	experience.[3]		Their	steep	tuition	costs	are	justified	by	the	promise	
that	graduates	will	be	able	to	find	exciting	jobs	with	high	salaries	once	they’re	done.	It	can	be	a	great	
option	for	someone	with	little	to	no	coding	experience	who	is	looking	to	broaden	their	skills	and	
transition	into	a	new	job.	Once	someone	decides	that	this	is	the	route	they	want	to	take,	the	first	step	
is	to	complete	an	application	online.	One	of	the	first	challenges	that	person	(you!)	will	face	is	the	
coding	challenge.	

1.2.  What	is	the	purpose	of	a	coding	challenge?	

When	applying	for	a	software	engineering	position	at	a	company,	the	employer	is	typically	going	to	
do	more	than	look	at	your	resume	and	schedule	a	short	interview.	They	may	ask	you	to	solve	a	few	
technical	challenges,	either	online	or	on	a	whiteboard.	This	is	done	in	order	to:	

1.  Determine	how	well	you	can	code.	
2.  Gauge	your	problem-solving	abilities	when	faced	with	a	novel	challenge.	
3.  Figure	out	if	you	can	work	through	a	difficult	problem	under	a	time	limit.	
4.  See	how	you	handle	a	situation	if	you	are	stuck	or	confused.	

Coding	bootcamps	follow	the	same	model	and	typically	ask	their	applicants	to	solve	a	few	coding	

challenges	at	some	point	in	the	interview	process.	Below	are	a	couple	of	sample	bootcamp	coding	
challenges:	

[1]	Course	Report	Market	Sizing	Report	2016:	http://bit.ly/296nHFr		
[2]	Quora	question	about	international	coding	bootcamps:	http://bit.ly/2cRX0Em		
[3]	Course	Report	Market	Sizing	Report	2016:	http://bit.ly/296nHFr	

	
	
	
	
	
	
	
	
	
	
	
	
6 

You	have	been	given	a	list	of	words.	Write	a	program	that	will	take	this	list	and	return	a	new	list	with	
all	duplicate	words	removed.		

You	have	been	given	a	number.	Write	a	program	that	will	determine	if	this	number	is	a	prime	number	
or	not.	

During	the	interview,	you	will	most	likely	have	the	option	of	asking	questions	to	clarify	your	

understanding	of	the	problem.		You	will	then	be	asked	to	give	a	high-level	explanation	of	how	you	will	
work	through	the	problem	followed	by	writing	a	solution	on	the	whiteboard	or	in	a	Word	document.		
Afterwards,	you	will	most	likely	discuss	your	code	with	the	interviewer	who	may	ask	questions	like	
why	you	wrote	it	in	such	a	way,	whether	it	will	work	for	a	given	input,	or	how	it	might	be	made	more	
efficient.	

In	the	end,	you	will	(hopefully)	have	written	a	program	that	does	what	it’s	supposed	to	and	the	
interviewer	will	(hopefully)	have	gained	an	understanding	of	how	you	think	when	presented	with	a	
challenging	problem,	how	you	react	to	any	issues	that	may	arise,	and	whether	you	are	adept	at	
explaining	your	thought	processes.	

1.3. 

Coding	bootcamp	interviews	vs.	job	interviews	

As	mentioned,	most	coding	bootcamps	follow	the	same	model	for	interviews	as	companies	looking	to	
recruitcandidates	for	coding	jobs.	These	positions	usually	go	by	one	of	the	following	names:	

•  Software	Engineer	
•  Software	Developer	
•  Front-end	Developer/Engineer	
•  Back-end	Developer/Engineer	
•  Web	Developer	
•  Programmer	
• 

(Insert	programming	language	here)	developer	

While	the	interview	models	may	be	similar,	the	questions	asked	in	bootcamp	interviews	are	going	

to	be	very	different	than	those	asked	in	interviews	for	engineering	positions	at	companies	like	
Google,	for	instance.	When	applying	to	a	coding	job	at	a	company,	the	questions	will	typically	be	
more	complex.	They	may	require	knowledge	in	several	domains	of	computer	science,	including	data	
structures,	algorithms,	systems	design,	mathematical	optimization,	and	statistics.		They	may	also	
require	much	more	code	to	actually	solve	the	problem.	

Below	are	some	examples	of	challenges	you	may	encounter	at	large	technology	companies	like	

Google	or	Microsoft:	

Find	the	largest	common	subtree	within	two	binary	search	trees.	Solve	this	problem	in	linear	time	if	
you	can.	

	
	
	
	
	
	
	
	
	
	
	
	
7 

How	would	you	sort	a	1	terabyte	file	of	people’s	names	if	your	RAM	is	limited	to	4	gigabytes?	What	
data	structures	would	you	use?	

You	may	be	asking	yourself:	does	the	ability	to	solve	these	challenges	mean	someone	is	a	good	
programmer?	What	if	they	can	solve	the	problems	but	don’t	work	great	under	the	pressure	of	a	time	
constraint?	What	if	they	just	studied	the	solutions	to	a	hundred	coding	challenges	a	few	days	before	
the	interview	but	couldn’t	actually	solve	them	on	their	own?		Some	members	of	the	programming	
community	are	very	critical	of	the	“the	technical	interview,”	and	there	are	plenty	of	articles,	blog	
posts,	and	sites	online	that	explain	why	these	types	of	challenges	may	be	flawed	for	determing	
whether	someone	is	actually	a	good	programmer.[1]	Feel	free	to	read	the	resources	listed	in	the	
footnote	on	this	topic,	but	know	that	as	of	now,	you	will	most	likely	encounter	coding	challenges	
when	applying	to	coding	bootcamps	and	companies	for	engineering	positions.	

1.4.  How	are	coding	challenges	related	to	engineering	problems?		

Coding	challenges	are	meant	to	be	representative	of	real	software	engineering	tasks	that	may	arise	in	
everyday	programming.	While	coding	challenges	in	interviews	are	meant	to	be	solved	within	a	few	
minutes	and	with	limited	code,	they	can	still	be	related	to	solutions	for	real	engineering	issues.	Here	
are	some	examples	of	how	interview	questions	can	be	related	to	real	engineering	and	development	
problems:	

•  You	may	be	asked	to	write	a	program	that	sorts	a	list	of	objects	by	name	or	age.	In	a	real-

world	situation,	you	may	have	an	application	that	presents	user	data	to	an	admin	that	must	
then	be	filtered	and	sorted	in	different	ways.	

•  You	may	be	asked	to	write	a	program	that	quickly	determines	what	object	in	a	list	was	created	
last	and	then	removes	it.	This	can	be	related	to	an	application	that	presents	events	happening	
in	real-time	and	needs	to	quickly	change	or	remove	the	latest	event.	

•  You	may	be	asked	to	write	a	program	that	removes	duplicate	elements	from	a	list.	This	can	be	
related	to	a	program	that	stores	a	birthday	wishlist	and	prevents	duplicate	entries	from	being	
displayed	if	an	original	entry	for	an	item	already	exists	in	the	list.	

As	mentioned,	coding	challenges	for	bootcamp	interviews	are	generally	easier	than	coding	
challenges	you	may	get	in	a	job	interview.	For	a	bootcamp,	knowledge	of	basic	logic,	simple	looping,	
data	structures	such	as	arrays	and	objects,	and	an	understanding	of	functional	programming	may	be	
enough	to	pass.	The	challenges	may	be	presented	in	a	way	that	requires	you	to	make	use	of	different	
data	structures	and	then	combine	them,	along	with	several	different	lines	of	logical	statements.	This	
is	to	see	if	you	have	a	basic	grasp	of	programming,	problem	solving,	and	logical	thinking.	

[1]	Google	search	for	programmers	and	coding	interviews:	http://bit.ly/2dNSJ7j		

	
	
	
	
	
	
	
	
	
	
	
	
	
In	a	job	interview	however,	the	coding	challenges	can	be	a	bit	harder	and	they	may	require	use	of	
more	advanced	data	structures,	complex	algorithms,	and	clever	insights	to	solve.	We	will	cover	some	
questions	that	can	be	asked	in	job	interviews	later	on	in	the	book,	and	you	will	see	how	they	differ	
from	coding	challenges	typically	asked	in	coding	bootcamp	admissions.	Understanding	and	being	able	
to	solve	both	types	of	coding	challenges	will	prove	to	be	incredibly	useful	in	your	coding	education.	

8 

1.5.  What	you’ll	learn	in	this	book	

From	here	on	in,	this	book	will	provide	you	with	some	basic	code	examples	and	explanations.	It	will	
then	list	several	different	coding	challenges	that	are	a	combination	of	the	following	topics:	

•  Fundamental	data	structures	
•  Working	with	hashtables	
•  Looping	through	arrays	
•  Functional	programming	

Every	question	will	have	an	explanation	detailing	how	to	approach	the	problem	and	figure	out	a	
high-level	solution,	followed	by	the	presentation	of	a	working	code	solution.	Some	of	the	challenges	
will	begin	with	a	brute-force	solution	and	then	will	slowly	be	modified	towards	a	more	efficient	
program.		All	of	the	challenges	will	have	working	solutions	in	JavaScript,	Python,	and	Ruby.	

My	ultimate	goal	is	not	for	you	to	memorize	a	bunch	of	solutions	to	common	challenges.		Instead,	

my	goal	is	for	you	to	learn	how	to	approach	coding	challenges	so	that	you	can	figure	out	what	they	
are	asking	and	what	data	structures	and	algorithms	you	need	to	solve	them.	Actually	learning	to	code	
the	solutions	to	problems	takes	time,	practice,	and	a	good	grasp	of	the	programming	language	you	
are	using.	In	this	book	I	hope	to	teach	you	common	themes	between	most	coding	challenges	and	
show	you	how	specific	data	structures	and	algorithms	can	be	used	to	solve	almost	every	single	
challenge.	

1.6. 

Skill	level	required	for	these	challenges	

This	book	is	intended	for	people	who	understand	the	basic	syntax	of	JavaScript,	Python,	and/or	Ruby,	
and	have	done	some	coding	in	one	of	those	langauges.	It	will	be	easier	to	understand	the	challenge	
solutions	if	you	have	an	understanding	of	the	following	topics:	

•  Loops		
•  Arrays		
•  String	manipulation	
•  Objects	and	accessing	different	properties	
•  Hash	tables	
•  Basic	math	functions	(e.g.	ceiling,	floor,	modulo)	

If	you	still	need	to	brush	up	on	these	topics	in	any	of	the	three	languages	listed	above,	below	are	
some	resources	you	may	find	helpful:	

	
	
	
	
	
	
	
	
	
	
	
9 

JavaScript	

1.  http://eloquentjavascript.net	(especially	chapters	1,	3,	4	and	5)	
2.  https://coderbyte.com/course/learn-javascript-in-one-week	(refresher	in	JavaScript	basics)	
3.  https://www.codecademy.com/learn/javascript	(if	you’re	brand	new	to	JavaScript)	
4.  https://teamtreehouse.com/library/javascript-basics		

Python	

1.  https://learnpythonthehardway.org/book/		
2.  https://coderbyte.com/course/learn-python-in-one-week		
3.  https://www.codecademy.com/learn/python	(if	you’re	brand	new	to	Python)	
4.  http://www.learnpython.org/	(small	tutorials	with	code	samples	you	can	run	online)	

Ruby	

1.  http://tryruby.org/levels/1/	(fun	interactive	site	to	learn	Ruby)	
2.  https://coderbyte.com/course/learn-ruby-in-one-week		
3.  https://www.codecademy.com/learn/ruby	(if	you’re	brand	new	to	Ruby)	
4.  https://learnrubythehardway.org/book/		

All	of	the	challenges	in	Chapter	3	will	be	on	a	scale	similar	to	the	easy	and	medium	challenges	on	
Coderbyte	(https://coderbyte.com/challenges).	The	only	exception	is	the	last	challenge,	or	the	“Three	
sum”	problem.	This	one	is	a	bit	harder	than	the	rest,	but	is	a	good	challenge	to	study	for	a	couple	of	
reasons.		It’s	an	example	of	a	challenge	where	a	basic	solution	is	easy	to	see	at	first	(i.e.,	writing	a	few	
nested	loops)	but	which	can	be	improved	by	some	clever	manipulation	of	data	structures	and	inputs	
to	produce	a	much	faster	solution.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
CHAPTER	2:	Basics	

10 

2.1. 

Fundamental	data	structures	you’ll	need	for	the	bootcamp	coding	challenge	

Array	
A	data	structure	is	a	way	of	organizing	data	in	a	computer.	A	simple	example	of	a	data	structure	you	
may	be	familiar	with	already	is	the	array.	An	array	allows	you	to	create	and	store	a	list	of	elements	in	
some	specific	order	for	access	later	on.	In	some	languages,	the	elements	all	have	to	be	of	the	same	
type	(e.g.,	string,	integers,	etc.),	but	in	JavaScript,	Python,	and	Ruby,	you	can	have	an	array	that	stores	
elements	of	different	types.		

Hash	Table	
The	second	most	important	data	structure	for	coding	challenges	may	very	well	be	the	hash	table	(also	
known	as	an	‘associate	array’	or	‘hash	map’).	It	is	a	data	structure	that	maps	keys	to	values	in	an	
efficient	way.	Elements	in	hash	tables	are	not	necessarily	stored	in	the	order	they	are	added;	instead,	
they	are	accessed	by	their	given	keys.	If	you	were	checking	for	the	existence	of	a	certain	item	within	
an	array,	you	would	have	to	write	a	loop	that	checks	every	element	in	it	and	stops	once	the	desired	
element	was	found.	Even	the	built-in	functions	(e.g.,	indexOf	in	JavaScript,	in	in	Python,	include?	in	
Ruby)	that	do	this	for	us	are	written	in	a	way	that	actually	loops	through	the	array.	A	hash	table	on	
the	other	hand	does	not	need	to	loop	to	check	if	an	element	exists	because	the	values	are	associated	
with	given	keys.[1]	This	means	that	a	hash	table	lookup	and	insertion	will	run	in	constant	time	(more	
on	this	later).[2]	

Object	

An	object	allows	you	to	group	together	properties	such	as	variables,	arrays,	and	even	other	data	
structures	and	keep	all	of	them	in	a	sort	of	“container.”	In	Python	and	Ruby,	you	first	create	a	class	
which	acts	as	a	blueprint,	and	then	you	can	instantiate	objects	based	on	the	class.	For	example,	you	
can	create	a	Car	class	which	will	list	all	possible	properties	of	a	car,	and	then	you	can	create	several	
different	Car	objects.	In	JavaScript,	this	process	is	very	similar	except	you	do	not	create	a	class	and	
then	instantiate	objects;	rather,	one	object	will	act	as	the	“root”	(or	prototype)	object	and	then	you	
can	make	copies	of	that	object.	

2.2.  What	is	Big-O?	

One	main	aspect	of	computer	science	and	programming	is	analyzing	the	speed	at	which	our	programs	
run	given	certain	inputs.	For	example,	imagine	you	wrote	a	program	that	reads	in	an	array	of	names,	
sorts	the	array	into	alphabetical	order,	and	then	returns	the	result.	If	your	program	is	given	an	array	
of	10	names,	it	most	likely	runs	in	less	than	half	a	second.	But	how	long	would	it	take	for	your	
program	to	run	with	100,000	names,	or	even	1	million	names?	This	is	where	the	analysis	of	

[1]	What	is	a	HashTable	Data	Structure	Youtube	Video:	http://bit.ly/2dZ5Q3E		
[2]	Stack	Overflow	posts	about	hash	tables	and	running	time:	http://bit.ly/2dxFHFF	and	http://bit.ly/2dm1mD5		

	
	
	
	
	
	
	
	
	
	
	
	
11 

algorithms	and	Big-O	comes	into	play.	There	are	a	ton	of	great	resources	out	there	that	explain	in	
rigorous	detail	how	Big-O	works	both	theoretically	and	practically,	but	I’ll	provide	a	short	explanation	
so	that	later	on	you	can	have	an	understanding	of	the	difference	between	a	code	solution	that	runs	in	
O(n2)	vs.	O(n).	

Big-O	is	basically	a	tool	that	allows	us	to	measure	how	algorithms	respond	to	changes	in	input.	

In	other	words,	how	does	the	algorithm	perform	if	the	input	n	is	very	small	versus	if	n	is	extremely	
large?	The	syntax	for	using	Big-O	is	to	use	a	variable	(usually	the	letter	n)	which	represents	the	length	
of	the	input,	and	place	it	within	parentheses.	Given	that	O(n)	means	that	the	algorithms	grows	
linearly	with	the	input,	you	can	imagine	that	we	must	perform	a	computational	“step”	for	every	
element	in	the	input.	So	if	n	represents	an	array	with	100	elements,	then	our	algorithm	will	perform	
about	100	steps.	If	n	now	grows	to	100,000	elements,	our	algorithm	will	perform	100,000	steps.		

Now	imagine	we	have	an	algorithm	that	runs	in	O(n2).	If	n	represents	an	array	with	100	

elements,	our	algorithm	will	perform	about	10,000	steps	before	finishing	(1002	=	10,000).	If	n	now	
grows	to	100,000	elements,	our	algorithm	will	need	to	perform	about	10,000,000,000	steps	before	
finishing!	Now	you	can	see	the	extreme	difference	between	O(n)	and	O(n2)	when	n	is	equal	to	
100,000	elements.	Now	let’s	say	that	each	computational	“step”	takes	about	1	millisecond	to	run	(in	
reality,	the	time	it	takes	to	perform	a	simple	computation	is	much	faster	than	1	millisecond	on	a	
modern	computer).	If	the	input	n	is	equal	to	an	array	with	100,000	elements,	the	O(n)	time	algorithm	
will	finishing	running	in	about	100	seconds	(1	millisecond	*	100,000),	while	the	O(n2)	algorithm	will	
need	about	115	days	before	it	finishes	running.	Given	the	option	to	choose	an	algorithm	that	runs	in	
O(n)	or	O(n	2),	we	should	absolutely	always	choose	O(n).	

You	can	see	a	table	of	commonly	used	Big-O	expressions	here:	http://bit.ly/2e2YlpC,	and	here	

is	a	good	introductory	article	on	the	basics	of	Big-O:	http://bit.ly/1PzbnX4.		

	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
12 

PART	2	
CHALLENGES	

“One	of	my	most	productive	days	was	throwing		
away	1,000	lines	of	code.”	

-	Ken	Thompson	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
CHAPTER	3:	Practice	

13 

3.1. 

Fizz	buzz	

We	will	start	off	with	the	infamous	Fizz	buzz	challenge.	This	challenge	has	been	used	frequently	in	the	
past	as	an	initial	coding	challenge	to	filter	out	people	who	cannot	write	a	simple	solution.	The	general	
problem	is:	

Print	out	all	the	numbers	from	1	to	100.	But	for	every	number	divisible	by	3	print	replace	it	with	the	
word	“Fizz,”	for	any	number	divisible	by	5	replace	it	with	the	word	“Buzz”	and	for	a	number	divisible	
by	both	3	and	5	replace	it	with	the	word	“FizzBuzz.”		

So	your	program	should	output:	

1 
2 
Fizz 
4 
Buzz 
Fizz 
7 
. 
. 
. 

Let	us	examine	how	we	can	solve	this	problem.	The	first	thing	we	notice	is	that	we	will	definitely	need	
to	write	a	loop	because	the	problem	asks	us	to	print	numbers	within	a	range.	Then	we	need	to	check	
every	number	we	encounter	whether	it	is	divisible	by	3,	5,	or	3	and	5.	This	means	we’ll	most	likely	
need	at	least	3	conditional	statements.	To	check	if	a	number	is	divisible	by	some	number	X	we	will	be	
using	the	modulo	operator.[1]	Then	we	need	to	either	directly	print	the	numbers,	or	we	can	store	all	
of	the	numbers	in	an	array	and	then	return	the	final	array.	Below	is	a	sample	solution	with	some	
comments:	

[1]	Stack	Overflow	post	explaining	how	to	use	the	modulo	operator:	http://bit.ly/2dxq9Ss		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
14 

JavaScript	

function fizzbuzz(n) { 

  // we will store the resulting numbers within an array 
  let result = []; 

  // loop from 1 to n 
  for (let i = 1; i <= n; i++) { 

    let add = ''; 

    // check if there is a remainder when dividing by 3, if not 
    // then we know this number is divisible by 3 
    if (i % 3 === 0) { add += 'Fizz'; } 

    // check if divisible by 5 
    if (i % 5 === 0) { add += 'Buzz'; } 

    // not divisible by either 3 or 5 
    if (add === '') { result.push(i); }  
    else { result.push(add); } 

  } 

  return result; 

}   

Python	

def fizzbuzz(n):  

  # we will store the resulting numbers within an array 
  result = [] 

  # loop from 1 to n 
  for i in range(1, n + 1): 

    add = '' 

    # check if there is a remainder when dividing by 3, if not 
    # then we know this number is divisible by 3 
    if i % 3 == 0: 
      add += 'Fizz' 

    # check if divisible by 5 
    if i % 5 == 0: 
      add += 'Buzz' 

    # not divisible by either 3 or 5 
    if add == '': 
      result.append(i) 
    else: 
      result.append(add) 

  return result 

	
	
	
	
	
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
15 

Ruby	

def fizzbuzz(n) 

  # we will store the resulting numbers within an array 
  result = [] 

  # loop from 1 to n 
  (1..n).each do |i| 

    add = '' 

    # check if there is a remainder when dividing by 3, if not 
    # then we know this number is divisible by 3 
    if i % 3 == 0 
      add += 'Fizz' 
    end 

    # check if divisible by 5 
    if i % 5 == 0 
      add += 'Buzz' 
    end 

    # not divisible by either 3 or 5 
    if add == '' 
      result.push(i) 
    else 
      result.push(add) 
    end 

  end 

  return result 

end 

3.2. 

Two	sum	problem	

The	two	sum	problem	is	a	classic	coding	interview	question	asked	at	both	coding	bootcamps	and	job	
interviews.	The	problem	is	as	follows:	

You	are	given	an	array	and	some	number	S.	Determine	if	any	two	numbers	within	the	array	sum	to	S.		

We’ll	first	cover	the	most	intuitive	way	to	solve	this	problem.	That	is	to	simply	loop	through	the	array	
and	for	each	element	check	if	there	is	a	second	element	that	when	both	are	summed	are	equal	to	S.	
This	will	require	us	to	write	a	nested	loop.[1]	This	solution	will	run	in	O(n2)	time	though	because	of	the	
nested	loop.	We	can	actually	do	better	and	write	an	algorithm	that	runs	only	in	O(n)	time	but	uses	
some	extra	space.	

[1]	Post	on	“Why	are	nested	loops	considered	bad	practice?”	http://bit.ly/2dL7w08		

	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
     
 
 
 
We	will	use	a	hash	table	where	insertion	and	lookup	run	in	constant	O(1)	time.	As	we	loop	through	
the	array	we	add	each	element	into	a	hash	table.	Then	we	check	to	see	if	S	minus	the	current	
elements	exists	in	the	hash	table	as	we	are	looping.	

16 

JavaScript	

function twoSum(arr, S) { 

  let hashTable = {}; 

  // check each element in array 
  for (let i = 0; i < arr.length; i++) { 

    // calculate S - current element 
    let sumMinusElement = S - arr[i]; 

    // check if this number exists in hash table 
    if (hashTable[sumMinusElement] !== undefined) {  
      return true; 
    } 

    // add the current number to the hash table 
    hashTable[arr[i]] = true; 

  } 

  return false; 

} 

Python	

def twoSum(arr, S): 

  hashTable = {} 

  # check each element in array 
  for i in range(0, len(arr)): 

    # calculate S minus current element 
    sumMinusElement = S - arr[i] 

    # check if this number exists in hash table 
    if sumMinusElement in hashTable: 
      return True 

    # add the current number to the hash table 
    hashTable[arr[i]] = True 

  return False 

	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17 

Ruby	

def twoSum(arr, s) 

  hashTable = Hash.new 

  # check each element in array 
  arr.each_with_index do |v, i| 

    # calculate s minus current element 
    sumMinusElement = s - arr[i] 

    # check if this number exists in hash table 
    if hashTable.key?(sumMinusElement) 
      return true 
    end 

    # add the current number to the hash table 
    hashTable[arr[i]] = true 

  end 

  return false 

end 

3.3. 

Calculcate	the	sum	of	nested	arrays	

This	problem	asks	you	to	sum	up	all	of	the	numbers	within	an	array,	but	the	array	may	also	contains	
other	arrays	with	numbers.	This	is	what	we	call	a	nested	array.	For	example:	

[1, 1, 1, [3, 4, [8]], [5]]  

is	a	nested	array	and	summing	all	the	elements	should	produce	23.	We	will	solve	this	problem	by	
implementing	a	recursive	function	where	if	an	array	is	encountered	within	an	array,	we	simply	sum	all	
of	the	inner	arrays	elements	and	then	add	that	to	the	final	result.	For	example,	with	the	code	solution	
below	applied	to	the	above	array,	the	following	steps	would	take	place:		

1.  result	=	1	
2.  result	=	1	+	1	=	2	
3.  result	=	2	+	1	=	3	
4.  result	=	3	+	sumNested([3,	4,	[8]])	

4.1. 
4.2. 
4.3. 

result	=	3	
result	=	3	+	4	
result	=	7	+	sumNested([8])	

4.3.1.  result	=	8	

5.  result	=	3	+	15	=	18	
6.  result	=	18	+	sumNested([5])	
result	=	5	

6.1. 

7.  result	=	18	+	5	=	23	

	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
The	algorithm	below	simply	loops	through	the	entire	array,	and	if	a	nested	array	is	encounterd,	it	
loops	through	all	of	its	elements	as	well.	The	running	time	of	this	algorithm	is	therefore	O(n)	where	n	
is	the	length	of	the	entire	list	of	elements.		

18 

JavaScript	

function sumNested(arr) { 

  let result = 0; 

  // sum up all the numbers in array 
  for (let i = 0; i < arr.length; i++) { 

    // if element is a nested array, sum all of its elements 
    if (typeof arr[i] !== 'number') { 
      result += sumNested(arr[i]); 
    } else { 
      result += arr[i]; 
    } 

  } 

  return result; 

} 

Python	

def sumNested(arr): 

  result = 0 

  # sum up all the numbers in array 
  for i in range(0, len(arr)): 

    # if element is a nested array, sum all of its elements 
    if type(arr[i]) is not int: 
      result += sumNested(arr[i]) 
    else: 
      result += arr[i] 

  return result 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
   
 
 
 
 
 
 
 
 
 
19 

Ruby	

def sumNested(arr) 

  result = 0 

  # sum up all the numbers in array 
  arr.each_with_index do |val, i| 

    # if element is a nested array, sum all of its elements 
    if !val.instance_of? Fixnum 
      result += sumNested(val) 
    else 
      result += val 
    end 

  end 

  return result 

end 

3.4. 

Calculcate	the	angle	on	a	clock	

This	problem	asks	you	to	determine	the	angle	between	the	to	hands	on	a	clock.	For	example,	if	the	
minute	hand	is	on	the	3	and	the	hour	hand	is	on	the	12,	then	this	forms	a	90	degree	angle.	If	the	hour	
hand	is	slightly	past	the	2	and	the	minute	hand	is	on	the	4,	then	the	angle	formed	between	the	hands	
is	50	degrees	(image	below	for	reference	[Clock	angle	problem	on	Wikipedia:	http://bit.ly/2dxFmmt]).	

We	will	solve	this	problem	by	first	calculating	the	angles	for	the	hour	hand	and	minute	hand	
separately.	The	minute	hand	is	the	easiest	and	that	is	simply:	

Minute	hand	angle	=	6	*	minutes	

because	there	are	360	degrees	total	on	the	clock	and	there	are	a	total	of	60	minutes,	so	360	/	60	=	6	
degrees	per	minute.	The	hour	hand	is	a	bit	trickier	because	it	moves	slightly	every	time	the	minute	
hand	moves.	Therefore,	to	calculate	the	angle	of	the	hour	hand	we	need	to	take	into	account	how	
much	the	minute	hand	has	moved.		

	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
20 

First,	we	can	perform	the	same	calculcation	we	did	above	but	with	different	values.	The	hour	hand	
moves	around	the	entire	clock	after	12	hours,	of	720	minutes,	which	gives	us	360	/	720	=	0.5	per	
minute.	We	also	need	to	account	for	how	much	the	minute	hand	has	moved.	The	full	equation	is	
below:	

Hour	hand	angle	=	0.5	*	change	in	minutes	=	0.5	*	(60	*	hour	+	minutes)	

The	angle	between	these	two	hands	will	therefore	be	the	absolute	value	of	the	hour	hand	angle	
minus	the	minute	hand	angle.	But	one	caveat,	and	that	is	if	the	number	is	greater	than	180	degrees	
we	actually	need	to	subtract	the	value	from	360	because	the	hands	are	on	the	opposite	side	of	the	
clock.	

JavaScript	

function clockAngle(hour, min) {  

  var h = 0.5 * (60 * hour + min); 
  var m = 6 * min; 
  var angle = Math.abs(h - m); 
  return (angle > 180) ? 360 - angle : angle; 

} 

Python	

def clockAngle(hour, mins): 

  h = 0.5 * (60 * hour + mins) 
  m = 6 * mins 
  angle = abs(h - m) 

  if angle > 180: 
    return 360 - angle 
  else: 
    return angle 

Ruby	

def clockAngle(hour, min) 

  h = 0.5 * (60 * hour + min) 
  m = 6 * min 
  angle = (h - m).abs 

  if angle > 180 
    return 360 - angle 
  else 
    return angle 
  end 

end 

	
	
	
	
	
	
	
	
	
	
	
	
 
          
 
 
 
 
 
 
 
 
21 

3.5.  Determine	if	N	is	a	prime	number	

This	is	a	classic	coding	questins	that	asks	you	to	write	a	program	to	determine	whether	or	not	some	
input	N	is	a	prime	number.	A	prime	number	is	a	number	that	is	divisible	only	by	1	and	itself.	The	first	
few	prime	numbers	are:	2,	3,	5,	7,	11,	17,	…	

The	simplest	way	to	solve	this	challenge	is	to	first	see	that	the	only	way	for	a	number	to	be	a	
prime	is	for	it	to	have	no	divisors	between	2	and	itself.	For	example,	to	check	if	9	is	prime	you	would	
check	if	9	is	divisible	by	2,	if	9	is	divisible	by	3,	etc.	To	check	if	a	number	is	exactly	divisible	by	some	
other	number	we	are	going	to	using	the	modulo	operation	to	see	if	there	is	a	remainder	after	the	
divison.	For	example,	9	modulo	2	gives	us	1,	but	then	9	%	3	is	0	so	we	know	that	9	is	not	a	prime	
number	because	it	is	divisble	by	3.		

The	solution	for	this	problem	would	therefore	be	structured	the	following	way:	Write	a	loop	

from	2	to	N	to	check	if	(N	modulo	x),	where	x	is	every	number	we	are	checking,	is	equal	to	0.	If	so,	
then	the	number	is	prime,	otherwise	it	is	not.	But	there	is	a	tiny	detail	we	can	implement	to	make	the	
algorithm	run	a	bit	faster.	The	detail	is	that	if	N	is	not	a	prime	number,	then	there	are	two	numbers	
when	multipled	give	N:	a	*	b	=	N.	The	detail	is	that	one	of	the	numbers,	a	or	b,	will	always	be	less	
than	the	square	root	of	N.[1]	With	this	detail	in	mind,	we	don’t	need	to	loop	from	2	to	N	now,	we	can	
simply	loop	from	2	to	the	square	root	of	N.	The	running	time	will	therefore	be	O(√n).	

JavaScript	

function isprime(n) {  

  // all numbers less than 2 are not primes 
  if (n < 2) { return false; }        

  // loop from 2 to sqrt(n)  
  for (let i = 2; i <= Math.ceil(Math.sqrt(n)); i++) { 

    // check if (n mod i) is equal to 0, if so then there are 
    // two numbers, a and b, that can multiply to give n 
    if (n % i === 0) { return false; } 

  } 

  return true; 

} 

[1]	Stack	Overflow	post	and	comment	on	“Calculcating	and	printing	the	Nth	prime	number”	http://bit.ly/2e7gzLi		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
   
 
 
 
   
 
22 

Python	

import math 

def isprime(n):  

  # all numbers less than 2 are not primes 
  if n < 2: 
    return False 

  # loop from 2 to sqrt(n) 
  for i in range(2, int(math.ceil(math.sqrt(n)))): 

    # check if (n mod i) is equal to 0, if so then there are 
    # two numbers, a and b, that can multiply to give n 
    if n % i == 0: 
      return False 

  return True 

Ruby	

def isprime(n) 

  # all numbers less than 2 are not primes 
  return false if n < 2 

  # loop from 2 to sqrt(n) 
  (2..Math.sqrt(n).round).each do |i| 

    # check if (n mod i) is equal to 0, if so then there are 
    # two numbers, a and b, that can multiply to give n 
    return false if n % i == 0 

  end 

  return true 

end 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
   
 
 
 
 
 
 
 
 
          
 
23 

3.6. 

Implement	map	and	filter	

Map	and	filter	are	common	functional	programming	methods	that	you’ve	most	likely	used	when	
coding.	They	are	both	functions	that	take	in	a	list,	perform	some	operation	on	that	list	without	
changing	the	original	list,	and	then	return	a	new	lists.	The	functions	do	not	change	any	other	variables	
and	do	not	touch	anything	else	except	those	lists	they	were	given.	JavaScript,	Python,	and	Ruby	all	
have	their	own	built-in	versions	of	these	functions,	but	we	are	going	to	impement	our	own.	

Map	works	by	taking	a	list	and	a	function,	and	it	applies	the	function	to	each	element	in	the	list	and	
returns	a	new	list.	For	example,	you	may	want	to	square	every	number	in	an	array	or	append	a	string	
to	every	element	in	an	array.	We	want	an	implementation	where	we	can	pass	in	two	parameters,	one	
being	the	array	and	the	second	being	some	function	that	will	be	mapped	onto	every	element.	

Filter	works	by	taking	a	list	and	a	conditional	statement,	and	it	returns	a	new	list	where	every	
element	in	the	original	list	passes	the	conditional	(returns	true).	For	example,	you	may	have	a	list	of	
ages	and	you	want	a	new	list	of	ages	where	each	one	is	between	21	and	35.	We	want	an	
implementation	where,	similar	to	the	map	function,	we	pass	in	a	list	and	a	function	that	contains	
within	it	a	conditional	statement.	

Some	extra	resources	on	functional	methods	are	listed	below:	

JavaScript	
http://cryto.net/~joepie91/blog/2015/05/04/functional-programming-in-javascript-map-filter-
reduce/		

Python	
http://blog.lerner.co.il/implementing-map-reduce/		

Ruby	
https://mauricio.github.io/2015/01/12/implementing-enumerable-in-ruby.html		
http://augustl.com/blog/2008/procs_blocks_and_anonymous_functions/		

	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
24 

JavaScript	

function map(arr, fn) { 

  let result = []; 

  // apply the function to each element and store the result 
  for (let i of arr) { 
    let applied = fn(i); 
    result.push(applied); 
  } 

  return result; 

} 

// usage 
let square = (x) => x * x; 
let addZeros = (x) => parseInt(x += '00'); 

map([1, 2, 3, 4], square); // => [1, 4, 9, 16] 
map([1, 2, 3, 4], addZeros); // => [100, 200, 300, 400] 

function filter(arr, fn) { 

  let result = []; 

  // pass the element to the function and check 
  // if the result comes back true 
  for (let i of arr) { 
    let check = fn(i); 
    if (check) { result.push(i); } 
  } 

  return result; 

} 

// usage 
let isPositive = (x) => x > 0; 
filter([-2, 4, 5, 8, -44, -6], isPositive); // => [4, 5, 8] 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
25 

Python	

def map(arr, fn): 

  result = [] 

  # apply the function to each element and store the result 
  for i in arr: 
    applied = fn(i) 
    result.append(applied) 

  return result 

# usage 
square = lambda x: x * x 
addZeros = lambda x: int(str(x) + '00') 

map([1, 2, 3, 4], square) # => [1, 4, 9, 16] 
map([1, 2, 3, 4], addZeros) # => [100, 200, 300, 400] 

def filter(arr, fn): 

  result = [] 

  # pass the element to the function and check 
  # if the result comes back true 
  for i in arr: 
    check = fn(i) 
    if check: 
      result.append(i) 

  return result 

# usage 
isPositive = lambda x: x > 0 
filter([-2, 4, 5, 8, -44, -6], isPositive); # => [4, 5, 8] 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
26 

Ruby	

def map(arr, fn) 

  result = [] 

  # apply the function to each element and store the result 
  arr.each do |i| 
    applied = fn.call(i) 
    result.push(applied) 
  end 

  return result 

end 

square = lambda { |x| x * x } 
addZeros = lambda { |x| x.to_s + '00' }  

p map([1, 2, 3, 4], square) # => [1, 4, 9, 16] 
p map([1, 2, 3, 4], addZeros) # => [100, 200, 300, 400] 

def filter(arr, fn) 

  result = [] 

  # pass the element to the function and check 
  # if the result comes back true 
  arr.each do |i| 
    check = fn.call(i) 
    if check 
      result.push(i) 
    end 
  end 

  return result 

end 

# usage 
isPositive = lambda { |x| x > 0 } 
p filter([-2, 4, 5, 8, -44, -6], isPositive); # => [4, 5, 8] 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
27 

3.7. 

Remove	set	of	characters	from	a	string	

These	types	of	challenges	are	very	common	for	people	learning	to	code.	The	problem	description	is:	

You	are	given	an	array	of	characters	and	a	string	S.	Write	a	function	to	return	the	string	S	with	all	the	
characters	from	the	array	removed.	

The	first	thing	to	notice	is	that	we’ll	need	to	loop	through	the	entire	string	S	and	loop	through	the	
array	of	characters	because	we’ll	need	to	find	the	characters	to	actually	remove	from	the	string.	
There	are	two	ways	to	construct	the	loops:	

1.  Loop	through	the	array	of	characters	and	for	each	chracter,	find	all	of	the	occurences	in	S	and	

remove	them.	

2.  Loop	through	the	string	S	and	if	the	current	character	exists	in	the	array	of	characters	

somewhere,	remove	it.	

We’re	going	to	go	with	the	second	option	because	we	can	improve	the	algorithm	by	actually	storing	
all	of	the	characters	in	the	array	in	a	hash	table.	This	will	allow	us	to	loop	through	the	string	S	and	
determine	if	the	current	character	needs	to	be	removed	by	checking	if	it	exists	in	the	hash	table.	
Remember	from	before,	checking	if	an	element	exists	in	a	hash	table	is	done	in	constant	time	so	the	
running	time	of	our	algorithm	will	be	O(n)	where	n	is	the	length	of	the	string	S	plus	some	
preprocessing	where	we	loop	through	the	array	of	characters	and	store	them	in	a	hash	table.	

JavaScript	

function removeChars(arr, string) { 

  // store characters of arr in a hash table 
  var hashTable = {}; 
  for (let c of arr) { 
    hashTable[c] = true; 
  } 

  // loop through the string and check if the character exists in  
  // the hash table, if so, do not add it to the result string 
  let result = ''; 
  for (let c of string) { 
    if (hashTable[c] === undefined) { 
      result += c; 
    } 
  } 

  return result; 

} 

// usage 
removeChars(['h', 'e', 'w', 'o'], "hello world"); // => "ll rld" 

	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
28 

Python	

def removeChars(arr, string): 

  # store characters of arr in a hash table 
  hashTable = {} 
  for c in arr: 
    hashTable[c] = True  

  # loop through the string and check if the character exists in  
  # the hash table, if so, do not add it to the result string 
  result = '' 
  for c in string: 
    if c not in hashTable: 
      result += c 

  return result 

# usage 
print removeChars(['h', 'e', 'w', 'o'], 'hello world') # => "ll rld" 

Ruby	

def removeChars(arr, string) 

  # store characters of arr in a hash table 
  hashTable = Hash.new 
  arr.each { |c| hashTable[c] = true } 

  # loop through the string and check if the character exists in  
  # the hash table, if so, do not add it to the result string 
  result = '' 
  string.split('').each do |c| 
    if !hashTable.key?(c) 
      result += c 
    end 
  end 

  return result 

end 

# usage 
puts removeChars(['h', 'e', 'w', 'o'], 'hello world') # => "ll rld" 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
3.8. 

Check	if	valid	number	of	parenthesis	

This	problem	asks	you	to	determine	if	there	is	a	valid	number	of	matching	parenthsis	in	a	string,	or	
more	formally:	

You	are	given	a	string	with	the	symbols	(	and	)	and	you	need	to	write	a	function	that	will	determine	if	
the	parenthsis	are	correctly	nested	in	the	string	which	means	every	opening	(	has	a	closing	)	

There	are	countless	ways	to	actually	nest	parenthsis	and	have	them	be	valid,	for	example:	

29 

() 
(()) 
()()() 
((()())) 

Below	are	examples	of	some	invalid	matchings:	

(() 
(((( 
())() 
()()()) 

The	first	thing	to	notice	is	that	it	doesn’t	matter	how	many	parenthesis	we	actually	have,	what	
matters	is	that	every	single	opening	parenthsis	“(“	at	some	point	has	a	closing	parenthesis	“).”	What	
we	can	do	to	solve	this	challenge	is	to	maintain	a	counter	and	every	single	time	we	encounter	an	
opening	symbol	we	add	1	to	it.	Then	every	time	we	encounter	a	closing	symbol	we	remove	1.	If	all	
opening	symbols	have	a	matching	symbol	at	some	point	in	the	string,	the	end	result	of	the	counter	
should	be	0.	If	it	is	more	or	less	we’ll	know	that	all	parenthesis	aren’t	properly	matched.	You	can	see	
that	for	the	first	4	examples	above,	if	we	maintain	a	counter	we	will	end	up	at	0	once	we	reach	the	
end	of	the	string.	

JavaScript	

function matchingParens(string) { 

  let counter = 0; 

  for (let c of string) { 
    if (c === '(') { counter += 1; }  
    if (c === ')') { counter -= 1; } 
  } 

  return (counter === 0) ? true : false; 

} 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
30 

Python	

def matchingParens(string): 

  counter = 0 

  for c in string: 
    if c == '(': 
      counter += 1r 
    elif c == ')': 
      counter -= 1 

  if counter == 0: 
    return True  
  else: 
    return False 

Ruby	

def matchingParens(string) 

  counter = 0 

  string.split('').each do |c| 
    if c == '(' 
      counter += 1 
    elsif c == ')' 
      counter -= 1 
    end 
  end 

  if counter == 0 
    return true  
  else 
    return false 
  end 

end 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
31 

3.9. 

First	non-repeating	character	

For	this	challenge	you	are	given	a	string	and	you	should	return	the	first	character	that	is	unique	in	the	
entire	string.	For	example:	

• 

If	string	is	“hello henry”	then	the	first	non-repeating	character	is	the	letter	“o”	because	
the	first	three	characters	in	the	string	appear	multiple	times.	

A	simple	solution	to	this	challenge	is	to	loop	through	the	string,	and	for	each	character,	loop	
through	the	rest	of	the	string	and	check	if	that	character	appears	somewhere	else.	Then	return	the	
first	character	that	does	not	appear	anywhere	in	the	string	except	the	current	location.	This	solution	
will	run	in	O(n2)	though	because	of	the	nested	loop,	so	there	is	definitely	room	for	improvement.	

We	need	to	somehow	store	the	letters	and	their	frequencies	in	a	data	structure	that’ll	allow	

us	to	check	how	many	times	a	specific	character	occurred.	To	solve	this	challenge,	we’ll	first	loop	
through	the	string	once	and	maintain	a	hash	table	that	stores	the	count	of	each	character.	Then	we’ll	
loop	through	the	string	again	and	return	the	first	character	we	encounter	that	has	a	count	of	1	in	the	
hash	table,	meaning	it	occurs	only	once	in	the	string.	This	algorithm	will	run	in	O(2n)	because	we	are	
looping	through	the	string	twice,	and	this	reduces	to	O(n)	because	we	drop	the	constant,[1]	which	is	
much	faster	than	the	nested	loop	algorithm	from	above.	

JavaScript	

function firstNonrepChar(string) { 

  let hashTable = {}; 

  // store each character in the hash table with  
  // the frequency of times it occurs 
  for (let c of string) { 
    if (hashTable[c] === undefined) { 
      hashTable[c] = 1; 
    } else { 
      hashTable[c] += 1; 
    } 
  } 

  // loop through string and return the first character 
  // with a count of 1 in the hash table 
  for (let c of string) { 
    if (hashTable[c] === 1) { 
      return c; 
    } 
  } 

  // return -1 if no unique character exists 
  return -1; 

} 

[1]	Stack	Overflow	post	on	“Why	is	the	constant	always	dropped	from	Big-O	analysis?”	http://bit.ly/2dNSM2X		

	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
32 

Python	

def firstNonrepChar(string): 

  hashTable = {} 

  # store each character in the hash table with  
  # the frequency of times it occurs 
  for c in string: 
    if c not in hashTable: 
      hashTable[c] = 1 
    else: 
      hashTable[c] += 1 

  # loop through string and return the first character 
  # with a count of 1 in the hash table 
  for c in string: 
    if hashTable[c] == 1: 
      return c 

  # return -1 if no unique character exists 
  return -1 

Ruby	

def firstNonrepChar(string) 

  hashTable = {} 

  # store each character in the hash table with  
  # the frequency of times it occurs 
  string.split('').each do |c| 
    if !hashTable.key?(c) 
      hashTable[c] = 1 
    else 
      hashTable[c] += 1 
    end 
  end 

  # loop through string and return the first character 
  # with a count of 1 in the hash table 
  string.split('').each do |c| 
    if hashTable[c] == 1 
      return c 
    end 
  end 

  # return -1 if no unique character exists 
  return -1 

end 

	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
3.10.  Count	words	that	have	at	least	3	continuous	vowels	

This	challenge	will	require	us	to	take	a	string,	separate	it	into	words,	and	then	loop	through	the	words	
and	count	how	many	words	have	at	least	3	vowels.	This	will	require	us	to	first	convert	a	string	into	an	
array	of	words,	then	loop	through	that	array	and	for	each	word	loop	through	its	characters	and	
determine	how	many	vowels	exist	in	it	and	whether	or	not	they	are	all	adjacent	to	each	other.	There	
are	two	ways	we	can	count	the	number	or	vowels	within	a	word:	

33 

1.  Loop	through	the	string	and	maintain	a	counter.	
2.  Perform	a	regular	expression	search	that	counts	the	vowels.	

We	are	going	to	go	with	the	second	method	of	using	a	regular	expression	(regex)	to	count	the	vowels	
in	a	word	and	determine	whether	they	are	continuous.	I’ll	leave	solving	this	challenge	via	the	first	
method	as	an	exercise	for	the	reader.	The	solution	below	splits	the	string	into	an	array	of	words	and	
then	loops	through	that	array	applying	a	regex	search	on	each	word.	A	regex	search	words	by	trying	
to	find	a	search	pattern	within	a	string.[1]	The	search	pattern	we	will	be	using	is	to	search	for	a	set	of	
characters,	the	vowes	in	this	case,	and	check	whether	at	least	3	of	them	occur	next	to	each	other.	

JavaScript	

function threeVowels(string) { 

  // split string into array of words 
  let arr = string.split(' '); 
  let count = 0; 

  // this is the pattern we will be searching for 
  // more on regex patterns here: https://mzl.la/1bMbpXP 
  const pattern = /[aeiou]{3,}/gi; 

  // loop through array of words 
  for (let word of arr) { 
    if (word.match(pattern) !== null) { 
      count += 1; 
    } 
  } 

  return count; 

} 

[1]	What	is	a	Regular	Expression?	http://bit.ly/2dL7WUh		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
34 

Python	

import re 

def threeVowels(string): 

  # split string into array of words 
  arr = string.split(' ') 
  count = 0 

  # this is the pattern we will be searching for 
  # more on regex patterns here: http://bit.ly/RGnLh4 
  # loop through array of words 
  for word in arr: 
    if re.search(r'[aeiou]{3,}', word) != None: 
      count += 1 

  return count 

Ruby	

def threeVowels(string) 

  # split string into array of words 
  arr = string.split(' ') 
  count = 0 

  # this is the pattern we will be searching for 
  # more on regex patterns here: http://bit.ly/2dAvCZl 
  pattern = /[aeiou]{3,}/ 

  # loop through array of words 
  arr.each do |word| 
    if pattern.match(word) != nil 
      count += 1 
    end 
  end 

  return count 

end 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
   
 
 
35 

3.11.  Remove	all	adjacent	matching	characters	

This	challenge	asks	you	to	remove	all	matching	adjacent	pairs	of	letters	from	a	string	and	return	the	
modified	string.	For	example,	if	the	string	is	“aaagykkok” then	your	program	would	return	
“agyok”	because	“aa”	and	“kk”	had	been	removed.		

The	first	thing	to	notice	is	that	we	can	create	a	simple	loop	that	checks	each	character	in	the	
string	and	checks	if	it	is	equal	to	the	character	right	after	it,	if	so,	it	skips	both	characters.	It	does	this	
for	every	character	with	a	special	case	added	to	check	if	the	end	of	the	string	has	been	reached	
(because	at	the	last	character,	we	cannot	check	if	it	is	equal	to	the	next	character	because	there	is	no	
next	character	once	it	reaches	the	end	of	the	string).	

JavaScript	

function removePairs(string) { 

  // new string that will be returned 
  let result = ''; 

  // loop through entire string 
  for (let i = 0; i < string.length; i++) { 
    // if on last character 
    if (i === string.length - 1) { 
      result += string[i]; 
    } 
    // characters are not equal then add to new string 
    else if (string[i] !== string[i + 1]) { 
      result += string[i]; 
    }  
    // if adjacent characters are equal to each other 
    // skip the next character entirely 
    else { 
      i += 1; 
    } 
  } 

  return result; 

} 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
36 

Python	

def removePairs(string): 

  # new string that will be returned 
  result = '' 
  i = 0 

  # loop through entire string 
  while i < len(string): 
    # if on last character 
    if i == len(string) - 1: 
      result += string[i] 
    # characters are not equal then add to new string 
    elif string[i] != string[i + 1]: 
      result += string[i] 
    # if adjacent characters are equal to each other 
    # skip the next character entirely 
    else: 
      i += 1 
    i += 1 

  return result 

Ruby	

def removePairs(string) 

  # new string that will be returned 
  result = '' 
  i = 0 

  # loop through entire string 
  while i < string.length do 
    # if on last character 
    if i == string.length - 1 
      result += string[i] 
    # characters are not equal then add to new string 
    elsif string[i] != string[i + 1] 
      result += string[i] 
    # if adjacent characters are equal to each other 
    # skip the next character entirely 
    else 
      i += 1 
    end 
    i += 1 
  end 

  return result 

end 

	
	
	
	
	
	
	
	
	
	
 
   
   
 
 
   
   
 
 
37 

3.12.  Find	the	majority	element	(element	that	appears	more	than	n/2	times)	

Finding	the	majority	element	in	an	array	involves	finding	an	element	that	appears	strictly	more	than	
n/2	times	where	n	is	the	size	of	the	array.	For	example,	in	the	array	[1, 4, 5, 5, 5, 5]	the	
element	5	appears	4	times	and	n/2	=	6/2	=	3,	so	the	element	5	is	the	majority	element.	If	on	the	other	
hand	the	array	was	[1, 4, 4, 5, 5] then	the	element	5	is	not	the	majority	element.	There	
actually	is	no	majority	element	because	no	element	appears	more	than	n/2	=	5/2	=	2	times.	

To	solve	this	challenge	we	can	create	a	nested	loop	and	in	the	outer	loop	go	through	each	

element,	and	then	in	the	inner	loop	check	all	the	other	elements	in	the	array	and	count	the	
occurences	of	the	current	element.	This	would	make	the	code	very	compact	but	the	algorithm	would	
run	in	O(n2)	time	because	of	the	nested	loop	checking	each	of	the	n	elements,	and	then	in	the	inner	
loop	checking	them	again:	n	*	n	=	n2.	There	is	a	faster	way	to	solve	this	problem	and	that	is	to	use	the	
Majority	Vote	Algorithm	(http://bit.ly/1KVeJTk).	It	works	the	following	way:	

1.  Start	with	a	candidate	element	that	is	empty	and	a	count	that	is	set	to	0.	
2.  For	each	element	in	the	array	we	check	it	against	the	candidate	element.	 	

• 

• 
• 

If	the	candidate	element	is	blank	or	the	count	is	equal	to	0,	set	the	current	element	to	be	
the	candidate	element	and	set	the	count	to	1.	
If	the	current	element	equals	the	candidate	element,	increase	the	count	by	1.	
If	the	current	element	does	not	equal	the	candidate	element,	decrease	the	count	by	1.	

This	algorithm	will	run	in	linear	time,	O(n),	because	it	only	loops	through	the	whole	array	a	single	
time	maintaining	two	variables	as	it	passes	through.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
38 

JavaScript	

function majorityElement(arr) { 

  let candidate = null; 
  var count = 0; 

  // 1. if candidate is null or count = 0 set candidate to the current element 
  // 2. if candidate matches current element we increase the count 
  // 3. if candidate does not match current element, decrease the count by 1 
  for (let i = 0; i < arr.length; i++) { 
    if (candidate === null || count === 0) { 
      candidate = arr[i]; 
      count = 1; 
    } else if (arr[i] === candidate) { 
      count += 1; 
    } else { 
      count -= 1; 
    } 
  } 

  // once we have a majority element we check 
  // to make sure it occurs more than n/2 times 
  count = 0; 
  for (let el of arr) { 
    if (el === candidate) { 
      count += 1; 
    } 
  } 

  return (count > Math.floor(arr.length / 2)) ? candidate : null; 

} 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
39 

Python	

import math 

def majorityElement(arr): 

  candidate = None 
  count = 0 

  # 1. if candidate is None or count = 0 set candidate to the current element 
  # 2. if candidate matches current element we increase the count 
  # 3. if candidate does not match current element, decrease the count by 1 
  for i in range(0, len(arr)): 
    if candidate is None or count == 0: 
      candidate = arr[i] 
      count = 1 
    elif arr[i] == candidate: 
      count += 1 
    else: 
      count -= 1 

  # once we have a majority element we check 
  # to make sure it occurs more than n/2 times 
  count = 0 
  for el in arr: 
    if el == candidate: 
      count += 1 

  if count > math.floor(len(arr) / 2): 
    return candidate 
  else: 
    return None 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
40 

Ruby	

def majorityElement(arr) 

  candidate = nil 
  count = 0 

  # 1. if candidate is nil or count = 0 set candidate to the current element 
  # 2. if candidate matches current element we increase the count 
  # 3. if candidate does not match current element, decrease the count by 1 
  arr.each do |i| 
    if candidate == nil || count == 0 
      candidate = i 
      count = 1 
    elsif i == candidate 
      count += 1 
    else 
      count -= 1 
    end 
  end 

  # once we have a majority element we check 
  # to make sure it occurs more than n/2 times 
  count = 0 
  arr.each do |el| 
    if el == candidate 
      count += 1 
    end 
  end 

  if count > (arr.length / 2).floor 
    return candidate 
  else 
    return nil 
  end 

end 

3.13.  Switching	light	bulbs	problem	

This	problem	has	a	lot	of	different	variations,	but	the	one	we	will	cover	here	is	the	following:	Imagine	
there	are	100	light	bulbs,	labeled	from	1	to	100,	lined	up	all	set	to	off	initially.	There	are	also	100	
people	each	numbered	1	to	100	as	well.	Person	1	will	go	through	all	the	light	bulbs	and	flip	the	switch	
turning	all	of	them	on.	Then	person	number	2	will	go	through	all	the	light	bulbs	and	flip	the	switch	on	
each	2nd	element	turning	them	off,	namely:	light	bulbs	#2,	#4,	#6,	#8,	etc.	Then	person	3	will	go	and	
do	the	same	for	the	3rd	ligh	bulb,	6th,	9th,	etc.	Then	questions	are	usually	asked	about	the	light	bulbs,	
for	example:	

•  How	many	light	bulbs	will	be	on	after	100	people	have	gone	through	them?	
•  What	is	the	status	of	the	Nth	light	bulb	(34th,	62nd,	etc.)?	Is	it	on	or	off?	
•  How	many	people	need	to	go	through	the	line	of	light	bulbs	until	exactly	K	light	bulbs	are	set	

to	on?	

	
	
	
	
	
	
	
 
 
 
 
 
 
To	answer	any	of	these	questions,	we’ll	write	a	function	that	goes	through	all	N	light	bulbs	and	
performs	each	operation	for	every	person	labeled	from	1	to	N.	What	we’ll	do	for	this	problem	is	
setup	an	array	of	N	elements	all	set	to	false,	which	will	represent	a	light	bulb	in	the	off	position.	Then	
we	will	loop	through	every	person	from	1	to	N,	and	within	that	loop	create	another	loop	that	will	
multiply	each	person’s	number	by	a	number	each	time	to	change	the	following	light	bulbs:	

41 

•  For	i	=	1,	change	1,	2,	3,	4,	etc.	
•  For	i	=	2,	change	2,	4,	6,	8,	etc.	
•  For	i	=	3,	change	3,	6,	9,	12,	etc.	

JavaScript	

function lightBulbs(N) { 

  // create N lightbulbs and set them to off 
  let lightbulbs = []; 
  for (let i = 0; i < N; i++) { 
    lightbulbs.push(false); 
  } 

  // each person i labeled from 1 to N sets each kth  
  // lightbulb on or off where k = 2*i, 3*i, etc. 
  for (let i = 1; i <= N; i++) { 
    let w = 1; 
    let k = w * i; 
    while (k <= N) { 
      lightbulbs[k - 1] = !lightbulbs[k - 1]; 
      w += 1; 
      k = w * i; 
    }  
  } 

  return lightbulbs; 

} 

Python	

def lightBulbs(N): 

  # create N lightbulbs and set them to off 
  lightbulbs = [False for i in range(0, N)] 

  # each person i labeled from 1 to N sets each kth  
  # lightbulb on or off where k = 2*i, 3*i, etc. 
  for i in range(1, N + 1): 
    w = 1 
    k = w * i 
    while k <= N: 
      lightbulbs[k - 1] = not lightbulbs[k - 1] 
      w += 1 
      k = w * i 

  return lightbulbs 

	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
42 

Ruby	

def lightBulbs(n) 

  # create N lightbulbs and set them to off 
  lightbulbs = Array.new(n, false) 

  # each person i labeled from 1 to N sets each kth  
  # lightbulb on or off where k = 2*i, 3*i, etc. 
  (1..n).each do |i| 
    w = 1 
    k = w * i 
    while k <= n do 
      lightbulbs[k - 1] = !lightbulbs[k - 1] 
      w += 1 
      k = w * i 
    end 
  end 

  return lightbulbs 

end 

3.14.  List	of	integers	that	overlap	in	two	ranges	

For	this	problem	you’ll	need	to	find	all	the	numbers	that	overlap	between	two	ranges,	for	example:	
between	the	two	ranges	of	[5,	20]	and	[17,	21]	the	overlapping	integers	are	[17,	18,	19,	20,	21].	One	
way	to	solve	this	problem	would	be	to	create	a	list	for	each	range	and	store	each	number	within	the	
respective	lists.	So	for	the	above	example,	you	would	create	two	lists:	

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 
[17, 18, 19, 20, 21]   

Then	you	would	just	loop	through	one	of	the	lists,	and	for	each	element	check	if	it	exists	

somewhere	in	the	second	list	using	a	built	in	array	search	function.	This	solution	would	work	and	
require	little	code,	but	it	is	not	an	efficient	way	to	solve	this	problem.	One	reason	is	because	there	
isn’t	really	any	point	in	actually	creating	the	lists	and	taking	up	space	with	them,	and	the	second	
reason	is	the	running	time	of	this	algorithm	would	be	about	O(n2)	because	this	function	would	have	a	
nested	loop.	We	can	solve	this	problem	in	a	more	efficient	way.	

We	will	simply	loop	from	the	start	of	range	1	to	the	end	of	range	1.	Then	we	will	check	if	each	
of	the	numbers	within	that	range	are	greater	than	the	beginning	of	range	2	and	lesser	than	the	end	of	
range	2.	This	algorithm	will	therefore	run	in	O(n)	time	where	n	represents	the	length	of	one	of	the	
ranges.	This	algorithm	only	performs	a	simple	check	within	the	loop,	namely,	whether	some	element	
is	smaller	and	greater	than	some	other	number	–	no	searching	required	which	is	what	speeds	up	the	
algorithm.	

	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
43 

JavaScript	

function overlapping(range1, range2) { 

  let overlap = []; 

  // check whether each number within range 1 
  // is within the numbers in range 2 
  for (let i = range1[0]; i <= range1[1]; i++) { 
    if (i >= range2[0] && i <= range2[1]) { 
      overlap.push(i); 
    } 
  } 

  return overlap; 

} 

Python	

def overlapping(range1, range2): 

  overlap = [] 

  # check whether each number within range 1 
  # is within the numbers in range 2 
  for i in range(range1[0], range1[1] + 1): 
    if i >= range2[0] and i <= range2[1]: 
      overlap.append(i) 

  return overlap 

Ruby	

def overlapping(range1, range2) 

  overlap = [] 

  # check whether each number within range 1 
  # is within the numbers in range 2 
  (range1[0]..range1[1]).each do |i| 
    if i >= range2[0] && i <= range2[1] 
      overlap.push(i) 
    end 
  end 

  return overlap 

end 

	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44 

3.15.  Return	mean,	median,	and	mode	of	an	array	

This	is	more	of	a	simpler	question	that	doesn’t	require	too	much	complex	code	to	solve.	It	simply	
requires	you	to	do	3	things,	calculcate	the	mean	which	is	the	average	of	all	the	numbers,	the	median	
which	is	the	middle	number	when	the	array	is	sorted,	and	the	mode	which	is	the	number	that	
appears	the	most.	

To	calculcate	the	average	we	will	simply	add	up	all	the	numbers	and	divide	by	the	length	of	
the	array.	To	calculcate	the	median	we	will	first	sort	the	array	and	then	return	the	middle	number.	
Finally,	the	mode	will	require	some	extra	work,	but	to	find	the	number	that	appears	most	often	we	
will	use	a	hash	table	to	store	the	number	of	times	each	number	occurs	and	we	will	return	the	one	
with	the	highest	occurences.	

	JavaScript	

function meanMedianMode(arr) { 

  // to calculcate the mean we add up all the numbers 
  // and divide by the length 
  let mean = arr.reduce((prev, cur) => prev + cur) / arr.length; 

  // to calculcate the median we need to sort the array 
  // and return the middle element 
  arr = arr.sort(); 
  let median = arr[Math.floor(arr.length / 2)]; 

  // to get the mode we will store all the elements in a hash table 
  // and keep a count and also always maintain the largest count 
  let mode = undefined; 
  let hashTable = {}; 
  for (let i of arr) { 
    hashTable[i] === undefined ? hashTable[i] = 1 : hashTable[i] += 1; 
    if (mode === undefined || hashTable[i] > mode) { 
      mode = i; 
    } 
  } 

  return { 'mean': mean, 'median': median, 'mode': mode }; 

} 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
45 

Python	

def meanMedianMode(arr): 

  # to calculcate the mean we add up all the numbers 
  # and divide by the length 
  mean = sum(arr) / float(len(arr)) 

  # to calculcate the median we need to sort the array 
  # and return the middle element 
  arr = sorted(arr) 
  median = arr[int(len(arr) / 2)] 

  # to get the mode we will store all the elements in a hash table 
  # and keep a count and also always maintain the largest count 
  mode = None 
  hashTable = {} 
  for i in arr: 
    if i in hashTable: 
      hashTable[i] += 1 
    else: 
      hashTable[i] = 1 
    if mode is None or hashTable[i] > mode: 
      mode = i 

  return { 'mean': mean, 'median': median, 'mode': mode } 

Ruby	

def meanMedianMode(arr) 

  # to calculcate the mean we add up all the numbers 
  # and divide by the length 
  mean = arr.inject(:+) / arr.length.to_f 

  # to calculcate the median we need to sort the array 
  # and return the middle element 
  arr = arr.sort 
  median = arr[(arr.length / 2).floor] 

  # to get the mode we will store all the elements in a hash table 
  # and keep a count and also always maintain the largest count 
  mode = nil 
  hashTable = {} 
  arr.each do |i| 
    if hashTable.key?(i) 
      hashTable[i] += 1 
    else 
      hashTable[i] = 1 
    end 
    if mode == nil or hashTable[i] > mode 
      mode = i 
    end 
  end 

  return { :mean => mean, :median => median, :mode => mode } 

end 

	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
46 

3.16.  Encode	consonants	within	a	string	

This	challenge	asks	you	to	take	a	string	composed	of	only	lowercase	letters	and	space	characters,	for	
example	“hello world”	and	replace	every	consonant	in	the	string	with	the	next	consontant	in	the	
alphabet.	So	in	the	above	example,	the	output	should	be	“jemmo xosmf”	and	you	can	see	that	we	
left	every	vowel	in	place	and	only	changed	the	consonants.	You	should	notice	that	the	last	letter	
changed	was	from	d	to	f	and	not	from	d	to	e	because	e	is	a	vowel.	

The	first	thing	that	would	be	helpful	for	this	challenge	is	some	sort	of	listing	of	all	the	
consonants	which	would	allow	us	to	easily	change	one	letter	to	the	other	by	just	moving	one	place	
over	in	the	array.	Then	to	solve	the	challenge	we	would	just	loop	through	the	string,	and	if	a	letter	is	
not	a	vowel	we	would	find	that	letter	in	the	array	of	consonants,	move	one	place	over	and	replace	
the	letter	in	the	string	with	that	new	letter.	This	would	be	a	solution	to	the	challenge,	but	the	running	
time	involves	both	the	length	of	the	string	n	and	the	length	of	the	consonant	array	m	because	we	are	
looping	through	the	string	while	also	searching	for	a	letter	in	the	array	each	time.	The	running	time	
still	reduces	to	O(n)	because	the	consonant	array	stays	constant	meaning	it	will	never	get	shorter	or	
longer	because	there	is	a	set	amount	of	constants	in	the	alphabet.	So	this	solution	is	pretty	good,	but	
we	can	actually	do	a	bit	better.	

To	make	this	solution	a	bit	faster	we	can	actualy	get	rid	of	the	consonant	array	altogether.	
This	is	because	we	can	convert	each	letter	as	we	go	to	its	character	code	number,	add	1	to	it,	and	
then	convert	this	number	back	to	a	letter	to	get	the	next	letter	in	the	alphabet.	Then	we	simply	
perform	an	extra	check	to	make	sure	the	new	letter	is	not	a	vowel,	but	if	so,	simply	add	1	more	to	its	
character	code	to	get	the	next	letter.	

Note:	You	can	actually	perform	a	modulo	operation	at	some	point	in	the	code	and	therefore	
there	will	be	no	need	for	the	special	“z”	character	conditional	at	the	beginning	of	the	loop.	I’ll	leave	
this	as	an	exercise	for	the	reader.	

	
	
	
	
	
	
	
47 

JavaScript	

function encodeConsonants(string) { 

  let result = ''; 

  // store an array of vowels for use later 
  const vowels = ['a', 'e', 'i', 'o', 'u']; 

  // loop through entire string 
  for (let i of string) { 

    // special case for z 
    if (i === 'z') { 
      result += 'b'; 
      break; 
    } 

    // if letter is not a vowel or a space 
    else if (vowels.indexOf(i) === -1 && i !== ' ') { 

      // convert each letter to its character code 
      let newCode = i.charCodeAt(0) + 1; 

      // perform check to make sure new letter is not a vowel by seeing if 
      // the new letter exists in an array of vowels 
      if (vowels.indexOf(String.fromCharCode(newCode)) !== -1) { 
        newCode += 1; 
      } 

      // get new letter and add to new string 
      result += String.fromCharCode(newCode); 

    }  

    // otherwise character is a vowel or a space 
    else { 
      result += i; 
    } 

  } 

  return result; 

} 

	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48 

Python	

def encodeConsonants(string): 

  result = '' 

  # store an array of vowels for use later 
  vowels = ['a', 'e', 'i', 'o', 'u'] 

  # loop through entire string 
  for i in string: 

    # special case for z 
    if i == 'z': 
      result += 'b' 
      break 

    # if letter is not a vowel or a space 
    elif i not in vowels and i != ' ': 

      # convert each letter to its character code 
      newCode = ord(i) + 1 

      # perform check to make sure new letter is not a vowel by seeing if 
      # the new letter exists in an array of vowels 
      if chr(newCode) in vowels: 
        newCode += 1 

      # get new letter and add to new string 
      result += chr(newCode) 

    # otherwise character is a vowel or a space 
    else: 
      result += i 

  return result 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
49 

Ruby	

def encodeConsonants(string) 

  result = '' 

  # store an array of vowels for use later 
  vowels = ['a', 'e', 'i', 'o', 'u'] 

  # loop through entire string 
  string.chars.each do |i|  

    # special case for z 
    if i == 'z' 
      result += 'b' 
      break 

    # if letter is not a vowel or a space 
    elsif vowels.include?(i) == false and i != ' ' 

      # convert each letter to its character code 
      newCode = i.ord + 1 

      # perform check to make sure new letter is not a vowel by seeing if 
      # the new letter exists in an array of vowels 
      if vowels.include?(newCode.chr) 
        newCode += 1 
      end 

      # get new letter and add to new string 
      result += newCode.chr 

    # otherwise character is a vowel or a space 
    else 
      result += i 
    end 

  end 

  return result 

end 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
50 

3.17.  Convert	an	array	of	strings	into	an	object	

This	challenge	doesn’t	strictly	have	a	single	output	like	the	previous	challenges,	rather	this	challenge	
focuses	on	you	using	certain	data	structures	correctly.	Imagine	you	have	several	users	entering	
information	through	a	form,	and	on	the	back-end	you	get	the	information	as	a	comma	separated	
string	of	information.	The	information	the	user	will	enter	in	the	form	is:	Name,	Email,	Age,	and	
Occupation	all	in	that	order.	Each	user’s	piece	of	information	will	be	separated	by	a	comma,	and	each	
user	will	be	separated	by	a	space,	but	some	pieces	of	information	can	be	blank	for	a	user	(excluding	
the	name),	for	example:	

“Daniel,me@test.com,56,Coder John,,,Teacher Michael,mike@test.com,,”   

You	can	see	above	that	all	the	information	exists	for	Daniel,	but	email	and	age	are	missing	for	

John,	and	age	and	occupation	are	missing	for	Michael.	You	should	write	a	function	that	will	take	in	
this	string	of	user	information,	and	create	an	object	(key-value	mapping)	where	the	key	is	the	
person’s	name	and	the	value	will	also	be	an	object	that	stores	the	information	of	each	user:	email,	
age,	and	occupation.	You	can	assume	people’s	names	will	be	unique.	

To	solve	this	challenge,	we’ll	split	the	string	(at	the	space	character)	into	an	array	of	different	
people,	and	then	for	each	person	we’ll	split	the	information	(at	the	comma	character).	Then	we	will	
create	a	new	user	object	and	throw	it	into	the	global	object	that	will	store	all	the	users.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
51 

JavaScript	

function convert(string) { 

  // create empty object 
  let obj = {}; 

  // split the string at each person 
  const people = string.split(' '); 

  // loop through all people 
  for (let p of people) { 

    // split information for each person 
    const info = p.split(','); 

    // store this information in the user object 
    let userObj = { 
      'email': info[1] || null, 
      'age': parseInt(info[2]) || null, 
      'occupation': info[3] || null 
    }; 

    // store key-value in object of users now 
    obj[info[0]] = userObj; 

  } 

  return obj; 

} 

// usage 
let s = "Daniel,me@test.com,56,Coder John,,,Teacher Michael,mike@test.com,,"; 
let people = convert(s); 

// testing 
people['Daniel']['age']; // => 56 
people['Michael']['occupation'] // => null 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
52 

Python	

def convert(string): 

  # create empty object 
  obj = {} 

  # split the string at each person 
  people = string.split(' ') 

  # loop through all people 
  for p in people: 

    # split information for each person 
    info = p.split(',') 

    # store this information in the user object 
    userObj = { 
      'email': info[1] or None, 
      'age': int(info[2]) if info[2] else None, 
      'occupation': info[3] or None 
    } 

    # store key-value in object of users now 
    obj[info[0]] = userObj 

  return obj 

# usage 
s = "Daniel,me@test.com,56,Coder John,,,Teacher Michael,mike@test.com,," 
people = convert(s) 

# testing 
people['Daniel']['age'] # => 56 
people['Michael']['occupation'] # => None 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
53 

Ruby	

def convert(string) 

  # create empty object 
  obj = {} 

  # split the string at each person 
  people = string.split(' ') 

  # loop through all people 
  people.each do |p| 

    # split information for each person 
    info = p.split(',') 

    # store this information in the user object 
    userObj = { 
      'email' => info[1] || nil, 
      'age' => info[2].to_i || nil, 
      'occupation' => info[3] || nil 
    } 

    # store key-value in object of users now 
    obj[info[0]] = userObj 

  end 

  return obj 

end 

# usage 
s = "Daniel,me@test.com,56,Coder John,,,Teacher Michael,mike@test.com,," 
people = convert(s) 

# testing 
p people['Daniel']['age'] # => 56 
p people['Michael']['occupation'] # => None 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
54 

3.18.  Three	sum	problem	

The	three	sum	problem	is	very	similar	to	the	two	sum	problem	we	covered	at	the	beginning	of	the	
chapter,	except	the	problem	statement	now	naturally	changes	to	3	elements	instead	of	two:	

You	are	given	an	array	and	some	number	S.	Determine	if	any	three	numbers	within	the	array	sum	to	S.		

As	with	the	nested	loop	solution	to	the	two	sum	problem,	we	can	create	a	set	of	three	nested	loops	
that	checks	if	any	three	elements	in	the	array	sum	to	S.	The	running	time	of	this	algorithm	is	O(n3)	
because	of	the	nested	loops.	We	can	solve	this	problem	more	efficiently	though	with	some	
modifications.	

First	we	sort	the	array	into	ascending	order.	We	can	use	a	built-in	sort	function	which	will	run	in	
O(nlogn).[1]	Then	we	loop	through	each	element	in	the	array	and	for	each	of	the	elements	we	
maintain	two	pointers	(or	indices),	one	from	the	(current	position	+	1)	and	the	second	pointer	starting	
from	the	end	of	the	array.	Then	we	check	to	see	if	these	3	elements	sum	to	S.	One	of	3	things	will	be	
true:	

1.  If	the	current	element	plus	the	2	other	elements	is	greater	than	S,	we	decrease	the	pointer	at	

the	end	of	the	array	at	1.	

2.  If	the	current	element	plus	the	other	2	elements	is	less	than	S,	we	increase	the	pointer	at	the	

beginning	by	1.	

3.  If	the	pointers	end	up	meeting,	then	we	know	we	cannot	add	2	elements	plus	the	current	
element	to	sum	to	S.	We	move	on	to	the	next	element	in	the	array	and	reset	the	pointers.	

This	algorithm	needs	to	loop	through	every	single	element	in	the	array,	and	for	each	element	in	the	
worst	case	we	will	loop	through	all	the	other	elements	until	the	pointers	end	up	at	the	same	point.	
This	algorithm	therefore	runs	in	O(nlogn)	+	O(n2)	which	reduces	to	O(n2).	

[1]	The	built-in	sorting	functions	in	JavaScript,	Python,	and	Ruby	use	either	mergesort,	quicksort,	or	some	
combination	of	them	to	create	a	fast	sorting	algorithm	that	runs	in	O(nlogn)	time.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
55 

JavaScript	

function threeSum(arr, S) { 

  // sort the array  
  var arr = arr.sort(); 

  // loop and check each element 
  for (let i = 0; i < arr.length - 2; i++) { 

    // start two pointers, one from the current position + 1 
    // and the other at the end of the array 
    let ptr_start = i + 1; 
    let ptr_end = arr.length - 1; 

    // check all other elements  
    while (ptr_start < ptr_end) { 

      let add = arr[i] + arr[ptr_start] + arr[ptr_end]; 

      // if we find a sum 
      if (add === S) { return true; }  

      // if the sum is < S 
      else if (add < S) { ptr_start += 1; } 

      // otherwise the sum is > S 
      else { ptr_end -= 1; } 

    } 

  } 

  return false; 

} 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
56 

Python	

def threeSum(arr, S): 

  arr = sorted(arr) 

  for i in range(0, len(arr) - 2): 
    # start two pointers, one from the current position + 1 
    # and the other at the end of the array 
    ptr_start, ptr_end = i + 1, len(arr) - 1 

    while ptr_start < ptr_end: 
      add = arr[i] + arr[ptr_start] + arr[ptr_end] 

      # if we find a sum 
      if add == S: 
        return True  
      # if the sum < S 
      elif add < S: 
        ptr_start += 1 
      # if the sum > S 
      else: 
        ptr_end -= 1 

  return False 

Ruby	

def threeSum(arr, S) 

  arr = arr.sort() 

  (0..arr.length - 2).each do |i| 

    # start two pointers, one from the current position + 1 
    # and the other at the end of the array 
    ptr_start = i + 1 
    ptr_end = arr.length - 1 

    while ptr_start < ptr_end 
      add = arr[i] + arr[ptr_start] + arr[ptr_end] 

      # if we find a sum 
      if add == S 
        return true  

      # if the sum < S 
      elsif add < S 
        ptr_start += 1 

      # if the sum > S 
      else 
        ptr_end -= 1 

      end 

    end 

  end 

  return false 

end 

	
	
	
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57 

PART	3	
GENERAL	INTERVIEW	TIPS	

“Computer	science	is	no	more	about	computers		
than	astronomy	is	about	telescopes.”	

-	Edsger	Dijkstra	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
CHAPTER	4:	Resources	

58 

Staying	calm	in	a	coding	interview	and	also	being	able	to	solve	the	challenge	within	a	time	limit	is	a	
skill	that	can	be	mastered	with	enough	practice	and	some	general	tips.	In	the	bulk	of	this	book	we’ve	
discussed	over	a	dozen	common	coding	questions	asked	in	a	coding	bootcamp	interview,	and	we	also	
covered	some	background	on	coding	bootcamps	and	algorithms.	Below	we’ll	provide	some	extra	
resources	where	you	can	learn	about	how	to	stay	calm	during	a	stressful	coding	question,	what	
questions	to	ask	the	interviewer,	how	to	answer	certain	questions	effectively,	etc.	

4.1. 

Personal	help	

For	personal	help,	Coderbyte	offers	the	Personalized	Study	Plan	(https://coderbyte.com/study-plan)	
that	will	help	create	a	personal	step-by-step	guide	for	you	to	help	prepare	for	a	coding	interview	to	a	
bootcamp	or	job.	It	contains	article,	resources,	challenges,	and	videos	tailored	to	your	goals	and	skill	
level	and	it’s	the	best	way	to	prepare	for	an	upcoming	coding	interview	at	a	top	company	or	elite	
coding	bootcamp	such	as	Hack	Reactor,	Fullstack	Acadaemy,	Flatiron	School,	Grace	Hopper,	
Codesmith,	etc.	

We	provide	access	to	an	online	community	with	our	own	Coderbyte	Slack	channel.	As	part	of	

the	Study	Plan	mentioned	above,	you	will	get	access	to	the	channel	and	you’ll	be	able	to	ask	
questions	and	chat	with	fellow	coders	preparing	for	upcoming	interviews.	

Aside	from	these	features,	one	of	the	best	ways	to	prepare	for	any	type	of	coding	interview	is	
to	simply	practice	solving	coding	challenges,	practice,	and	then	practice	some	more.	Coderbyte	offers	
more	than	160	coding	challenges	(https://coderbyte.com/challenges)	that	you	can	solve	directly	
online.	Then	you	can	look	at	thousands	of	user	solutions	to	see	how	others	solved	the	same	
challenges.	

4.2.		

Interview	preparation	articles	

•  Technical	Interview	Questions,	Prep	and	More	by	Hack	Reactor:	http://bit.ly/2e9niPs		
•  10	Must-Asks	in	a	Bootcamp	Interview	by	Course	Report:	http://bit.ly/2etZKcp		
•  How	to	Ace	the	Web	Developer	Job	Interview	by	Coding	Dojo:	http://bit.ly/21y4UBd		
•  5	Tips	to	Prepare	You	for	a	Coding	Bootcamp	by	Galvanize:	http://bit.ly/2dNTuxi		
•  From	Zero	to	Hack	Reactor	in	5	months	blog	post	by	Jennie	Eldon:	http://bit.ly/2dMjhT7		
•  What	I	Studied	Before	Applying	to	Hack	Reactor	post	by	Amira	Anuar:	http://bit.ly/2d8MJ7F		
• 
Inside	the	Mind	of	Hackbright’s	Director	of	Admissions	by	Hackbright:	http://bit.ly/2dNTwp4		
•  Compare	top	coding	bootcamps	tool	by	Thinkful:	http://bit.ly/2dxFhiI