File size: 6,221 Bytes
bd2002f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e806ae9
bd2002f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcca943
bd2002f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e806ae9
bd2002f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcca943
bd2002f
 
 
 
 
 
 
 
 
 
 
 
e806ae9
 
bd2002f
e806ae9
 
bd2002f
 
 
 
 
e806ae9
 
 
 
bd2002f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1afbf
bd2002f
1a1afbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
annotations_creators: []
language: en
size_categories:
- n<1K
task_categories: []
task_ids: []
pretty_name: btcv
tags:
- Med-SAM2
- Medical-SAM2
- btcv
- ct
- fiftyone
- fiftyone
- medical
- sam2
- scan
- segmentation
- video
description: The "Beyond the Cranial Vault" (BTCV) dataset used by Medical-SAM2 paper.
  Treats CT scans as a video samples for fine-tuning the Semgent-Anything-2 model.
dataset_summary: '


  ![image/png](dataset_preview.png)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 30 video samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  from fiftyone.utils.huggingface import load_from_hub


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = load_from_hub("Voxel51/BTCV-CT-as-video-MedSAM2-dataset")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for btcv

<!-- Provide a quick summary of the dataset. -->




![image/png](dataset_preview.png)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 30 video samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Voxel51/BTCV-CT-as-video-MedSAM2-dataset")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

This dataset is the "Beyond the Cranial Vault" (BTCV) dataset used by Medical-SAM2 paper. Med-SAM2 fine-tunes the Segment Anything Model 2 on to accurately segment CT-scan imagery.
The paper "adopts the philosophy of taking medical images as videos"; so, the images have been converted into videos, and maybe easily resampled into frames using `dataset.to_frames(sample_frames=True)`.

- **Curated by:** [Synapse](https://www.synapse.org/Synapse:syn3193805/wiki/89480)
- **Shared by [optional]:** [Jiayuan Zhu](https://huggingface.co/datasets/jiayuanz3/btcv/tree/main) and [Med-SAM2 Authors](https://github.com/MedicineToken/Medical-SAM2)

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Med-SAM2 Github Repository:** [MedicineToken/Medical-SAM2](https://github.com/MedicineToken/Medical-SAM2)
- **Paper:** [Medical SAM 2: Segment medical images as video via Segment Anything Model 2](https://arxiv.org/abs/2408.00874)
- **Data Repository:** [Med-SAM2 preprocessed dataset on HF](https://huggingface.co/datasets/jiayuanz3/btcv/tree/main)
- **Demo [optional]:** [Coming Soon...]

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

[More Information Needed]

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

[More Information Needed]

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

[More Information Needed]

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

[More Information Needed]

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

[More Information Needed]

### Annotations [optional]

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

[More Information Needed]

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

[More Information Needed]

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

## Citation [optional]

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

[More Information Needed]

## Dataset Card Authors

- [Evatt Harvey-Salinger](https://huggingface.co/evatt-harvey-salinger)