File size: 4,076 Bytes
2d09826
 
 
 
 
 
 
 
 
dac03a5
2d09826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a16c1a4
2d09826
a16c1a4
2d09826
 
 
 
 
 
 
 
 
 
dac03a5
2d09826
d43cac8
2d09826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a16c1a4
2d09826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
annotations_creators: []
language: en
license: cc-by-nc-2.0
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: DensePose-COCO
tags:
- fiftyone
- image
- object-detection
- segmentation
- keypoints
dataset_summary: >



  ![image/png](dataset_preview.jpg)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/DensePose-COCO")

  # dataset = fouh.load_from_hub("Voxel51/DensePose-COCO", max_samples=1000)



  # Launch the App

  session = fo.launch_app(dataset)

  ```
---

# Dataset Card for DensePose-COCO

DensePose-COCO is a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on COCO images.


![image/png](dataset_preview.jpg)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DensePose-COCO")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos
- **Language(s) (NLP):** en
- **License:** cc-by-nc-2.0

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/facebookresearch/Densepose
- **Paper :** https://arxiv.org/abs/1802.00434
- **Homepage:** http://densepose.org/

## Uses

Dense human pose estimation

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

```plaintext
Name:        DensePoseCOCO
Media type:  image
Num samples: 33929
Persistent:  False
Tags:        []
Sample fields:
    id:            fiftyone.core.fields.ObjectIdField
    filepath:      fiftyone.core.fields.StringField
    tags:          fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
    metadata:      fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
    detections:    fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
    segmentations: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
    keypoints:     fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Keypoints)
```
The dataset has 2 splits: "train" and "val". Samples are tagged with their split.


## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

Please refer the homepage and the paper for the curation rationale.


#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

Please refer the github repo for the annotation process.


## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```bibtex
  @InProceedings{Guler2018DensePose,
  title={DensePose: Dense Human Pose Estimation In The Wild},
  author={R\{i}za Alp G\"uler, Natalia Neverova, Iasonas Kokkinos},
  journal={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
  }
```


## Dataset Card Authors

[Kishan Savant](https://huggingface.co/NeoKish)