Datasets:
Tasks:
Object Detection
Modalities:
Image
Languages:
English
Size:
10K<n<100K
ArXiv:
Libraries:
FiftyOne
License:
File size: 4,076 Bytes
2d09826 dac03a5 2d09826 a16c1a4 2d09826 a16c1a4 2d09826 dac03a5 2d09826 d43cac8 2d09826 a16c1a4 2d09826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
annotations_creators: []
language: en
license: cc-by-nc-2.0
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: DensePose-COCO
tags:
- fiftyone
- image
- object-detection
- segmentation
- keypoints
dataset_summary: >

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DensePose-COCO")
# dataset = fouh.load_from_hub("Voxel51/DensePose-COCO", max_samples=1000)
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for DensePose-COCO
DensePose-COCO is a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on COCO images.

This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/DensePose-COCO")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos
- **Language(s) (NLP):** en
- **License:** cc-by-nc-2.0
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/facebookresearch/Densepose
- **Paper :** https://arxiv.org/abs/1802.00434
- **Homepage:** http://densepose.org/
## Uses
Dense human pose estimation
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
```plaintext
Name: DensePoseCOCO
Media type: image
Num samples: 33929
Persistent: False
Tags: []
Sample fields:
id: fiftyone.core.fields.ObjectIdField
filepath: fiftyone.core.fields.StringField
tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
detections: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
segmentations: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
keypoints: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Keypoints)
```
The dataset has 2 splits: "train" and "val". Samples are tagged with their split.
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Please refer the homepage and the paper for the curation rationale.
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
Please refer the github repo for the annotation process.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@InProceedings{Guler2018DensePose,
title={DensePose: Dense Human Pose Estimation In The Wild},
author={R\{i}za Alp G\"uler, Natalia Neverova, Iasonas Kokkinos},
journal={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018}
}
```
## Dataset Card Authors
[Kishan Savant](https://huggingface.co/NeoKish) |