Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
License:
File size: 4,273 Bytes
0d98556 2cd9469 0d98556 4360791 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 2cd9469 0d98556 2cd9469 caca6c4 0d98556 2cd9469 0d98556 caca6c4 0d98556 bc8a09e 0d98556 2cd9469 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 2cd9469 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 0d98556 caca6c4 bc8a09e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
annotations_creators: []
language: en
license: mit
size_categories:
- 10K<n<100K
task_categories:
- image-classification
task_ids: []
pretty_name: IndoorSceneRecognition
tags:
- fiftyone
- image
- image-classification
- CVPR2009
dataset_summary: >
![image/png](dataset_preview.jpg)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15620
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition")
# dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition", max_samples=1000)
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for IndoorSceneRecognition
The database contains 67 Indoor categories, and a total of 15620 images. The number of images varies across categories, but there are at least 100 images per category. All images are in jpg format.
![image/png](dataset_preview.jpg)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15620 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** A. Quattoni, A. Torralba, Aude Oliva
- **Funded by:** National Science
Foundation Career award (IIS 0747120)
- **Language(s) (NLP):** en
- **License:** mit
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Paper :** https://ieeexplore.ieee.org/document/5206537
- **Homepage:** https://web.mit.edu/torralba/www/indoor.html
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
- categorizing indoor scenes and segmentation of the objects in a scene
## Dataset Structure
```plaintext
Name: IndoorSceneRecognition
Media type: image
Num samples: 15620
Persistent: False
Tags: []
Sample fields:
id: fiftyone.core.fields.ObjectIdField
filepath: fiftyone.core.fields.StringField
tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
ground_truth_polylines: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Polylines)
```
The dataset has 3 splits: "train", "val", and "test". Samples are tagged with their split.
## Dataset Creation
### Curation Rationale
The authors of the paper A. Quattoni and A.Torralba wanted to propose a prototype based model that can exploit local and global discriminative
information in a indoor scene recognition problem. To test out the approach, with the help of Aude Oliva, they created a dataset of 67 indoor scenes categories
covering a wide range of domains.
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
A subset of the images are segmented and annotated with the objects that they contain. The annotations are in LabelMe format
## Citation
**BibTeX:**
```bibtex
@INPROCEEDINGS{5206537,
author={Quattoni, Ariadna and Torralba, Antonio},
booktitle={2009 IEEE Conference on Computer Vision and Pattern Recognition},
title={Recognizing indoor scenes},
year={2009},
volume={},
number={},
pages={413-420},
keywords={Layout},
doi={10.1109/CVPR.2009.5206537}}
```
## Dataset Card Authors
[Kishan Savant](https://huggingface.co/NeoKish)
|