File size: 4,273 Bytes
0d98556
 
 
 
 
 
 
 
 
2cd9469
0d98556
 
 
 
4360791
caca6c4
0d98556
 
 
 
 
 
 
caca6c4
 
0d98556
 
 
 
 
caca6c4
0d98556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caca6c4
0d98556
2cd9469
0d98556
2cd9469
caca6c4
0d98556
 
 
 
 
 
 
 
2cd9469
0d98556
caca6c4
0d98556
 
 
 
 
 
 
bc8a09e
0d98556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd9469
0d98556
 
 
 
 
 
 
 
 
 
 
 
caca6c4
 
 
0d98556
 
 
caca6c4
0d98556
 
 
caca6c4
 
0d98556
 
 
 
 
caca6c4
0d98556
 
 
 
caca6c4
2cd9469
caca6c4
 
 
 
 
 
 
 
 
 
 
 
 
0d98556
 
 
 
 
caca6c4
 
 
0d98556
 
 
 
 
caca6c4
0d98556
 
caca6c4
0d98556
 
 
caca6c4
 
 
 
 
 
 
 
 
 
 
bc8a09e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
annotations_creators: []
language: en
license: mit
size_categories:
- 10K<n<100K
task_categories:
- image-classification
task_ids: []
pretty_name: IndoorSceneRecognition
tags:
- fiftyone
- image
- image-classification
- CVPR2009
dataset_summary: >



  ![image/png](dataset_preview.jpg)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15620
  samples.


  ## Installation


  If you haven't already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include 'max_samples', etc

  dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition")

  # dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition", max_samples=1000)


  # Launch the App

  session = fo.launch_app(dataset)

  ```
---

# Dataset Card for IndoorSceneRecognition

The database contains 67 Indoor categories, and a total of 15620 images. The number of images varies across categories, but there are at least 100 images per category. All images are in jpg format. 




![image/png](dataset_preview.jpg)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 15620 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/IndoorSceneRecognition")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** A. Quattoni, A. Torralba, Aude Oliva 
- **Funded by:** National Science
Foundation Career award (IIS 0747120)
- **Language(s) (NLP):** en
- **License:** mit

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Paper :** https://ieeexplore.ieee.org/document/5206537
- **Homepage:** https://web.mit.edu/torralba/www/indoor.html

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

- categorizing indoor scenes and segmentation of the objects in a scene


## Dataset Structure

```plaintext
Name:        IndoorSceneRecognition
Media type:  image
Num samples: 15620
Persistent:  False
Tags:        []
Sample fields:
    id:                     fiftyone.core.fields.ObjectIdField
    filepath:               fiftyone.core.fields.StringField
    tags:                   fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
    metadata:               fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
    ground_truth:           fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
    ground_truth_polylines: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Polylines)
```
The dataset has 3 splits: "train", "val", and "test". Samples are tagged with their split.

## Dataset Creation

### Curation Rationale

The authors of the paper A. Quattoni and A.Torralba wanted to propose a prototype based model that can exploit local and global discriminative
information in a indoor scene recognition problem. To test out the approach, with the help of Aude Oliva, they created a dataset of 67 indoor scenes categories
covering a wide range of domains. 

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

A subset of the images are segmented and annotated with the objects that they contain. The annotations are in LabelMe format


## Citation

**BibTeX:**

```bibtex
@INPROCEEDINGS{5206537,
  author={Quattoni, Ariadna and Torralba, Antonio},
  booktitle={2009 IEEE Conference on Computer Vision and Pattern Recognition}, 
  title={Recognizing indoor scenes}, 
  year={2009},
  volume={},
  number={},
  pages={413-420},
  keywords={Layout},
  doi={10.1109/CVPR.2009.5206537}}
```

## Dataset Card Authors

[Kishan Savant](https://huggingface.co/NeoKish)