feat: basic version of convert.py
Browse files- convert.py +147 -0
- requirements.txt +3 -0
convert.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from qwikidata.entity import WikidataItem
|
| 2 |
+
from qwikidata.json_dump import WikidataJsonDump
|
| 3 |
+
import pyarrow as pa
|
| 4 |
+
import pyarrow.parquet as pq
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
# create an instance of WikidataJsonDump
|
| 8 |
+
wjd_dump_path = "wikidata-20240304-all.json.bz2"
|
| 9 |
+
wjd = WikidataJsonDump(wjd_dump_path)
|
| 10 |
+
|
| 11 |
+
# Create an empty list to store the dictionaries
|
| 12 |
+
# data = []
|
| 13 |
+
|
| 14 |
+
# # Iterate over the entities in wjd and add them to the list
|
| 15 |
+
# for ii, entity_dict in enumerate(wjd):
|
| 16 |
+
# if ii > 1:
|
| 17 |
+
# break
|
| 18 |
+
|
| 19 |
+
# if entity_dict["type"] == "item":
|
| 20 |
+
# data.append(entity_dict)
|
| 21 |
+
|
| 22 |
+
# TODO: Schema for Data Set
|
| 23 |
+
# Create a schema for the table
|
| 24 |
+
# {
|
| 25 |
+
# "id": "Q60",
|
| 26 |
+
# "type": "item",
|
| 27 |
+
# "labels": {},
|
| 28 |
+
# "descriptions": {},
|
| 29 |
+
# "aliases": {},
|
| 30 |
+
# "claims": {},
|
| 31 |
+
# "sitelinks": {},
|
| 32 |
+
# "lastrevid": 195301613,
|
| 33 |
+
# "modified": "2020-02-10T12:42:02Z"
|
| 34 |
+
#}
|
| 35 |
+
# schema = pa.schema([
|
| 36 |
+
# ("id", pa.string()),
|
| 37 |
+
# ("type", pa.string()),
|
| 38 |
+
# # {
|
| 39 |
+
# # "labels": {
|
| 40 |
+
# # "en": {
|
| 41 |
+
# # "language": "en",
|
| 42 |
+
# # "value": "New York City"
|
| 43 |
+
# # },
|
| 44 |
+
# # "ar": {
|
| 45 |
+
# # "language": "ar",
|
| 46 |
+
# # "value": "\u0645\u062f\u064a\u0646\u0629 \u0646\u064a\u0648 \u064a\u0648\u0631\u0643"
|
| 47 |
+
# # }
|
| 48 |
+
# # }
|
| 49 |
+
# ("labels", pa.map_(pa.string(), pa.struct([
|
| 50 |
+
# ("language", pa.string()),
|
| 51 |
+
# ("value", pa.string())
|
| 52 |
+
# ]))),
|
| 53 |
+
# # "descriptions": {
|
| 54 |
+
# # "en": {
|
| 55 |
+
# # "language": "en",
|
| 56 |
+
# # "value": "largest city in New York and the United States of America"
|
| 57 |
+
# # },
|
| 58 |
+
# # "it": {
|
| 59 |
+
# # "language": "it",
|
| 60 |
+
# # "value": "citt\u00e0 degli Stati Uniti d'America"
|
| 61 |
+
# # }
|
| 62 |
+
# # }
|
| 63 |
+
# ("descriptions", pa.map_(pa.string(), pa.struct([
|
| 64 |
+
# ("language", pa.string()),
|
| 65 |
+
# ("value", pa.string())
|
| 66 |
+
# ]))),
|
| 67 |
+
# # "aliases": {
|
| 68 |
+
# # "en": [
|
| 69 |
+
# # {
|
| 70 |
+
# # "language": "en",pa.string
|
| 71 |
+
# # "value": "New York"
|
| 72 |
+
# # }
|
| 73 |
+
# # ],
|
| 74 |
+
# # "fr": [
|
| 75 |
+
# # {
|
| 76 |
+
# # "language": "fr",
|
| 77 |
+
# # "value": "New York City"
|
| 78 |
+
# # },
|
| 79 |
+
# # {
|
| 80 |
+
# # "language": "fr",
|
| 81 |
+
# # "value": "NYC"
|
| 82 |
+
# # },
|
| 83 |
+
# # {
|
| 84 |
+
# # "language": "fr",
|
| 85 |
+
# # "value": "The City"
|
| 86 |
+
# # },
|
| 87 |
+
# # {
|
| 88 |
+
# # "language": "fr",
|
| 89 |
+
# # "value": "La grosse pomme"
|
| 90 |
+
# # }
|
| 91 |
+
# # ]
|
| 92 |
+
# # }
|
| 93 |
+
# # }
|
| 94 |
+
# ("aliases", pa.map_(pa.string(), pa.struct([
|
| 95 |
+
# ("language", pa.string()),
|
| 96 |
+
# ("value", pa.string())
|
| 97 |
+
# ]))),
|
| 98 |
+
# # {
|
| 99 |
+
# # "claims": {
|
| 100 |
+
# # "P17": [
|
| 101 |
+
# # {
|
| 102 |
+
# # "id": "q60$5083E43C-228B-4E3E-B82A-4CB20A22A3FB",
|
| 103 |
+
# # "mainsnak": {},
|
| 104 |
+
# # "type": "statement",
|
| 105 |
+
# # "rank": "normal",
|
| 106 |
+
# # "qualifiers": {
|
| 107 |
+
# # "P580": [],
|
| 108 |
+
# # "P5436": []
|
| 109 |
+
# # },
|
| 110 |
+
# # "references": [
|
| 111 |
+
# # {
|
| 112 |
+
# # "hash": "d103e3541cc531fa54adcaffebde6bef28d87d32",
|
| 113 |
+
# # "snaks": []
|
| 114 |
+
# # }
|
| 115 |
+
# # ]
|
| 116 |
+
# # }
|
| 117 |
+
# # ]
|
| 118 |
+
# # }
|
| 119 |
+
# # }
|
| 120 |
+
# ("claims", pa.map_(pa.string(), pa.array(pa.struct([
|
| 121 |
+
# ("id", pa.string()),
|
| 122 |
+
# ("mainsnak", pa.struct([])),
|
| 123 |
+
# ("type", pa.string()),
|
| 124 |
+
# ("rank", pa.string()),
|
| 125 |
+
# ("qualifiers", pa.map_(pa.string(), pa.array(pa.struct([
|
| 126 |
+
|
| 127 |
+
# ])))),
|
| 128 |
+
# ("references", pa.array(pa.struct([
|
| 129 |
+
# ("hash", pa.string()),
|
| 130 |
+
# ("snaks", pa.array(pa.struct([])))
|
| 131 |
+
# ])))
|
| 132 |
+
# ])))),
|
| 133 |
+
# ("sitelinks", pa.struct([
|
| 134 |
+
# ("site", pa.string()),
|
| 135 |
+
# ("title", pa.string())
|
| 136 |
+
# ])),
|
| 137 |
+
# ("lastrevid", pa.int64()),
|
| 138 |
+
# ("modified", pa.string())
|
| 139 |
+
# ])
|
| 140 |
+
|
| 141 |
+
# Create a table from the list of dictionaries and the schema
|
| 142 |
+
# table = pa.Table.from_pandas(pd.DataFrame(data), schema=schema)
|
| 143 |
+
table = pa.Table.from_pandas(pd.DataFrame(wjd))
|
| 144 |
+
|
| 145 |
+
# Write the table to disk as parquet
|
| 146 |
+
parquet_path = "wikidata-20240304-all.parquet"
|
| 147 |
+
pq.write_table(table, parquet_path)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
qwikidata
|
| 2 |
+
pyarrow
|
| 3 |
+
pandas
|